首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
Hydrolysis of chitosan in ionic liquids was carried out under microwave irradiation (MW) using sulfonic acid-functionalized ionic liquids (SFILs) as catalysts. The effect of microwave power, irradiation time, dosage of SFILs and DMSO was investigated by orthogonal tests. Under the optimal reaction conditions, the yield of total reducing sugars (TRS) reached over 90% within 2 min. The viscosity-average molecular weight of degraded chitosan was determined by viscosity method. The structures of the original and degraded chitosan were characterized by Fourier-transform infrared (FTIR) spectra, X-ray powder diffraction (XRD) analysis and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The influence of microwave power and irradiation time on the TRS and Mv was further studied. This method can dramatically reduce reaction time.  相似文献   

2.
Two-stage microwave (microwave/NaOH pretreatment followed by microwave/H2SO4 pretreatment) was used to release monomeric sugars from Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax). The optimum pretreatment conditions were investigated, and the maximum monomeric sugar yields were compared. The microwave-assisted NaOH and H2SO4 pretreatments with a 15:1 liquid-to-solid ratio were studied by varying the chemical concentration, reaction temperature, and reaction time to optimize the amount of monomeric sugars. The maximum amounts of monomeric sugars released from microwave-assisted NaOH pretreatment were 6.8 g/100 g of biomass [at 80 °C/5 min, 5 % (w/v) NaOH for S. spontaneum and at 120 °C/5 min, 5 % (w/v) NaOH for A. donax]. Furthermore, the maximum amounts of monomeric sugars released from microwave-assisted H2SO4 pretreatment of S. spontaneum and A. donax were 33.8 [at 200 °C/10 min, 0.5 % (w/v) H2SO4] and 31.9 [at 180 °C/30 min, 0.5 % (w/v) H2SO4] g/100 g of biomass, respectively. The structural changes of S. spontaneum and A. donax were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy.  相似文献   

3.
张泽志 《化学通报》2019,82(11):1033-1037
采用微波辅助浊点提取悬铃木球叶中的黄酮类化合物。在单因素试验的基础上,0.6%吐温-80的乙醇溶液作为浊点萃取剂,通过响应面法优化确立悬铃木黄酮类化合物的最佳提取工艺条件:微波功率410 W,提取时间7 min,液料比49:1 mL?g-1,实际测得黄酮平均得率1.480 mg?g-1。并对黄酮类化合物进行了分离纯化,得到2个化合物,经理化常数测定和波谱解析鉴定,化合物1为3,5,7-三羟基黄酮,分子式为C15H10O5;化合物2为山奈酚,分子式为C15H10O6。  相似文献   

4.
Mesoporous TiO2 microspheres with high specific surface areas were synthesized by means of a facile one‐step microwave hydrothermal process without using any template. The mesoporous materials were rapidly achieved using TiCl4, urea and ammonium sulphate at comparatively low microwave power (400 W) for 8 min irradiation. The morphology and microstructure of the as‐prepared products were characterized by field emission scanning electron microscopy (FESEM), X‐ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer‐Emmett‐Teller (BET) surface area analysis. Structural characterization indicates that the TiO2 microspheres display mesoporous structure. The average pore sizes and BET surface areas of the spheres were 5.3 nm and 222 m2g?1, respectively. The mesoporous nanocrystals synthesized at 160 °C for 8 min were then used to prepare the photoanode for dye sensitized solar cells (DSSCs). A high power conversion efficiency of 5.72% was achieved from the mesoporous TiO2 based photoanode, representing about 25.7% improvement over the efficiency of P25 photoanode.  相似文献   

5.
The combined effect of microwave and RF oxygen plasma treatment of SiO2 surface on the hydrogen sensitivity of Pd gate MOS sensor has been studied. Nine different samples of thermally grown SiO2 surface have been taken and treated with oxygen plasma of different microwave power (100 W, 150 W and 200 W respectively) while keeping RF power fixed (20 W) for different durations (5 min, 10 min and 15 min). Pd gate MOS sensors with these plasma treated SiO2 surface as dielectric have been fabricated and tested for different concentrations (500–3500 ppm) of hydrogen at room temperature. It is observed that the sensitivity of the sensor increases for higher duration of plasma exposure and also with microwave power but decreases when the sensor is treated with 200 W microwave power for 10 min and 15 min durations. The sensor treated with oxygen plasma of 200 W microwave power for 5 min duration exhibited the highest hydrogen sensitivity (74.4%). Fixed oxide charge density has also been evaluated as a function of exposure time for varying microwave power. Surface morphology of plasma treated SiO2 surfaces was studied by AFM to have the estimation of porosity. The high sensitivity can be attributed to the fact that oxygen plasma treatment provides the availability of higher number of adsorption sites and modification in the surface state density i.e. surface state density increases for plasma treated sensors.  相似文献   

6.
A series of Ni–La/γ-Al2O3 catalysts were prepared by adopting the methods of isometric impregnation and microwave impregnation. The catalysts were characterized with XRD, BET, and SEM, respectively. Inspecting the effects of adding La and the methods of impregnation on the hydrogenation activity of catalysts. The results show that adding a moderate amount of La promotes the dispersing of Ni on the carrier, the methods of microwave impregnation weaks the interaction between Ni and the carrier further, inhibits the formation of NiAl2O4, and the activity of catalyst prepared by the methods of microwave impregnation was significantly higher than that prepared by the methods of isometric impregnation. The hydrogenation activity of the Ni–La/γ-Al2O3 (WB) dipped with n(Ni): n(La) = 4: 1, microwave irradiation time 30 min with power 600W as well as calcined at 400°C exhibited the best performance. The conversion rate is 91.21% with reaction conditions: T = 160°C, p = 0.8 MPa, air speed 5 h–1, n(H2): n(benzene) = 2: 1.  相似文献   

7.
Two types of intermetallic lithium alloys, Li21Si5 and Li17Sn4 (previously Li22Si5 and Li22Sn5), were prepared for the first time using microwave-assisted solid-state reaction. The optimum oven power for their preparation is 80-60%, and the irradiation times are 5 min for Li21Si5 or 10 min for Li17Sn4. A cheap alumina crucible was found to be the most suitable container in quick (less than 10 min) microwave reactions for Li-containing alloys. The synthesized compounds were characterized by PXRD. Mössbauer spectroscopy was used to characterize Li17Sn4 under different conditions. The hyperfine interaction parameters of 119Sn in Li17Sn4 show a typical Li-Sn alloy Sn isomer shift (1.88 mm/s). The oxidization processes of the two intermetallic lithium alloys in air were investigated. The microwave method was found to be simple, fast and efficient, with high selectivity for the preparation of these compounds.  相似文献   

8.
 This paper summarizes several key points in applying the microwave preparation technique to the elemental analysis of aquatic sediments and reports systematic experiments in searching for an optimal microwave preparation procedure for element analysis in sediment samples. The determination of the elements Cu, Pb and Cd in a standard reference aquatic sediment sample (CRM 280, COMEUR) was achieved by first digesting the samples in a microwave oven equipped with PFA advanced composite vessels, followed by AAS measurement. The influence of microwave power, digestion time, various dissolution reagents and the HF removing conditions was studied. It has been shown that for a 0.1 g sediment sample the optimal microwave preparation conditions are: 4–5ml HNO3/HF/H2O2 as solvent, digesting time 30 min with 100% microwave power and evaporating the residual acid within 8 min in an open vessel at 80 °C. The element recovery rates with AAS measurement can reach up to 92.4–100.6%. Received: 23 July 1996/Revised: 23 September 1996/Accepted: 25 September 1996  相似文献   

9.
《Thermochimica Acta》2006,448(1):31-36
In this study, dehydration of sodium carbonate monohydrate (Na2CO3·H2O) (SCM) in microwave (MW) field with silicon carbide (SiC) as an indirect heating medium was investigated. SCM samples containing up to 3% free moisture were placed in the microwave oven. The heating experiments showed that SCM is a poor microwave energy absorber for up to 6 min of irradiation at an 800 W of microwave power. The heat for SCM calcination is provided by SiC which absorbs microwave. The monohydrate is then converted to anhydrous sodium carbonate on the SiC plate by calcining, i.e. by removing the crystal water through heating of the monohydrate temperatures of over 120 °C. The calcination results in a solid phase recrystallization of the monohydrate into anhydrate. In the microwave irradiation process, dehydration of SCM in terms of indirect heating can be accelerated by increasing the microwave field power.  相似文献   

10.
The in vitro effect of 2.45 GHz microwave irradiation on porcine pepsin activity under controlled temperature and absorbed microwave power via kinetic parameters was evaluated. Kinetic study with respect of time of irradiation demonstrated the existence of an inactivation effect of microwaves at pH 2 on pepsin molecule. Bovine serum albumin (BSA)-bromphenol blue (BPB) complex was used as substrate for the assay of pepsin by kinetic method. Depending on absorbed microwave dose, the degree of caused inactivation varies from 39.11 to 45.91% for 5 and 20 min of pepsin MW irradiation, respectively. The V maxapp and K mapp were calculated for low (5 min of MW irradiation) and higher specific absorbed dose (20 min of MW irradiation), as well as for untreated enzyme, from double reciprocal Lineweaver-Burk plot. The effect of microwaves on substrate (BSA-BPB complex) was also investigated. For reaction performed with MW irradiated substrate for 5 min the reaction rate was decreased for 15.15%, while for 20 min of substrate irradiation reaction rate was decreased for 25.52% compared to the control reaction. The article is published in the original.  相似文献   

11.
Sample preparation is an important step in the analytical process because it can introduce different error sources. Its efficiency is checked based on the quality and reliability of the data obtained, and the time spent on this task. This work evaluates medicinal plant decomposition parameters using polypropylene mini-vials heated by microwave radiation, applying the single vessel concept. As an example, sample mass amount (5 mg), mixture of oxidant agents (200 µL conc. HNO3+150 µL 30% v/v H2O2), microwave time and power were evaluated by heating 24 mini-vials in both closed-vessel (CV) and focused (F) microwave ovens. In order to achieve the best-optimised condition for sample preparation, cadmium and residual carbon determinations were carried out for all experiments. The residual carbon (between 0.30 and 0.45%) was determined by CHN elemental analysis and the cadmium concentration (up to 0.80 µg g−1) by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) in three different medicinal plants. The accuracy of the proposed methods was assessed using certified reference materials (rye grass, BCR 281 and bovine liver, NIST 1577b) as well as conventional microwave assisted decomposition. The new method used a minimum sample amount (5 mg) and reagent volume (ca. 400 µL) and only 4 and 10 min of microwave sample decomposition for CV and F ovens, respectively. In addition, the capacity of both microwave ovens was increased up to 4 times while contamination risks were inherently reduced with the single vessel concept.  相似文献   

12.

A super‐absorbent polymer was prepared by grafting copolymerization of acrylic acid onto Artemisia seed gum, using microwave irradiation and ammonium persulfate as an initiator. The effect of various preparation conditions on its water absorbency, such as the ratio of acrylic acid to Artemisia seed gum, degree of acrylic acid neutralization, amount of initiator and microwave irradiation time, was investigated by orthogonal tests. The optimal reaction conditions were 3 min (irradiation time), 70% neutralization degree of acrylic acid and 2% initiator on the basis of the mass of acrylic acid used. When the mass ratio of acrylic acid to Artemisia seed gum is 5:0.5, the product has a water absorbency close to 400 times at room temperature in distilled water, this indicated that is has a high water absorbency. The structure of the graft copolymer was confirmed by Fourier transform infrared spectrometer (FT‐IR) and thermogravimetric analysis (TGA). Further more, this microwave irradiation processing method to prepare water absorbent materials has no industrial cast off produced, that is to say, this method is environmentally friendly.  相似文献   

13.
A green synthetic procedure for the preparation of some calix[4]resorcinarenes using a household microwave oven has been carried out. This method represents a very rapid heating alternative to the conventional method that involves very long time of reactions (from 20-24 h in conventional heating to 5-8 min in microwave irradiation). C-4-hydroxy–3-methoxycalix[4]resorcinarene (CHMPCR), C-4-methoxyphenylcalix[4]resorcinarene (CMPCR) and C-2–phenylethenilcalix[4]resorcinarene (CPECR) was achieved by placed of resorcinol, an aldehyde, HCl and ethanol inside a household microwave oven. The product was recrystallized by methanol and analyzed by spectral analysis (FTIR, H-NMR and MS). Optimization of reaction was carried out in variation of microwave power, reaction times and reactant composition. The result shows that optimum condition of synthesis of C-4-hydroxy-3–methoxycalix[4]resorcinarene (CHMPCR) with microwave irradiation were at microwave power 332 W, reaction time 8 min and the mole ratio of resorcinol and 4-hydroxy-3-methoxyphenylbenzaldehyde 1:1. This parameter gave product in 97.8% (53.7% after recrystallization). The CPECR synthesis using resorcinol and cynnamaldehyde (1:1) at microwave power 332 W for 5 min afforded the product in 97.3% (44.5% after recrystallization). Whereas the reaction of resorcinol and 4-methoxyphenylbenzaldehyde (1:1.2) at microwave power 264 W for 5 min gave CMPCR in 99.5% (68.6% after recrystallization).  相似文献   

14.
Parthenolide, a strong cytotoxic compound found in different parts of Tarchonanthus camphoratus which motivated the authors to develop an optimized microwave-assisted extraction (MEA) method using Box–Behnken design (BBD) for efficient extraction of parthenolide from the stem of T. camphoratus and its validation by high-performance thin-layer chromatography (HPTLC) and cytotoxic analysis. The optimized parameters for microwave extraction were determined as: 51.5 °C extraction temperature, 50.8 min extraction time, and 211 W microwave power. A quadratic polynomial model was found the most suitable model with R2 of 0.9989 and coefficient of variation (CV) of 0.2898%. The high values of adjusted R2 (0.9974), predicted R2 (0.9945), and signal-to-noise ratio (74.23) indicated a good correlation and adequate signal, respectively. HPTLC analyzed the parthenolide (Rf = 0.16) content in T. camphoratus methanol extract (TCME) at λmax = 575 nm and found it as 0.9273% ± 0.0487% w/w, which was a higher than expected yield (0.9157% w/w). The TCME exhibited good cytotoxicity against HepG2 and MCF-7 cell lines (IC50 = 30.87 and 35.41 µg/mL, respectively), which further supported our findings of high parthenolide content in TCME. This optimized MAE method can be further applied to efficiently extract parthenolide from marketed herbal supplements containing different Tarconanthus species.  相似文献   

15.
Co-doped BiVO4, a visible-light-responsive photocatalytic semiconductor, was synthesized using a microwave hydrothermal method. The doped sample exhibited much higher photocatalytic activity for malachite green degradation under visible light irradiation than undoped BiVO4. Similarly, improved inactivation efficiency toward Escherichia coli and Chlamydomonas pulsatilla (green tide) were observed with Co-doped BiVO4. The degradation of malachite green by Co-doped BiVO4 reaches 99% within 90 min irradiation to visible light. Similarly, the inactivation of Escherichia coli reaches 81.3% in 5 h and Chlamydomonas pulsatilla reaches 65.6% in 1 h irradiation to visible light. The enhanced photoactivity is believed to be due to the increment of the visible light absorption range by narrowing the band gap energy. In addition, the highly exposed reactive (010) facets can efficiently capture the photoinduced electrons, promote charge separation, and reduce recombination probability. Thus, these findings provide mechanistic insight into the effectiveness of Co-doped BiVO4 semiconductors for the treatment of wastewater that contains industrial effluents and microorganisms.  相似文献   

16.
The present article presents, for the first time, the last developments reported for an original microwave hydrothermal flash synthesis of Fe-Co alloys (FeyCo1−y)/cobalt ferrite (Fe3−xCoxO4) nanocomposites. Synthesis was performed in alcoholic solutions of ferrous chloride, cobalt chloride and sodium ethoxide (EtONa) using a microwave autoclave (The RAMO system) specially designed by authors. Compared with conventional synthesis, smaller grains (100 nm compared to 1 μm) can be produced in a short period (e.g. 10 s) using a less basic medium. In all the cases, the microstructure and the amount of metal inside the composite particles are very different from the product obtained via a classical route. Indeed, 20% of metal was routinely obtained using the microwave flash synthesis. Nevertheless, this mean of production is more efficient and much faster than the ones commonly used to produce this type of nanocomposites.  相似文献   

17.
Syntheses proceeding by reflux may be improved, accelerated and simplified, by carrying out the reaction in a modified conventional microwave oven. To demonstrate the potential of this method, the synthesis of over 20 group 6 organometallic compounds is reported. Hexacarbonyls, most notably Mo(CO)6, react with a range of mono, and bi, and tridentate ligands in a modified conventional microwave oven. They generally proceed without an inert atmosphere, yields are high and reaction times are short. For example, cis-[Mo(CO)4(dppe)] is prepared in >95% yield in 20 min. Reaction of Mo(CO)6 with dicyclopentadiene affords a simple one-step synthesis of [CpMo(CO)3]2 in >90% yield, which reacts further with alkynes in toluene to produce dimetallatetrahedrane derivatives, [Cp2Mo2(CO)4(μ-RC2R)]; presumably via the in situ formation of air-sensitive [CpMo(CO)2]2. Dimolybdenum tetra-acetate is also prepared in 48% yield in 45 min, however, this reaction requires an inert atmosphere. While W(CO)6 reacts rapidly with amines to give cis diamine adducts in high yields, direct reactions with phosphines are not so clean. Bis(phosphine) complexes are, however, cleanly formed when a small amount of piperidine is added to the reaction mixture, presumably via the bis(piperidine) complex cis-[W(CO)4(pip)2]. Reactions with Cr(CO)6 generally require an inert atmosphere and proceed less cleanly, although the important synthon [Cr(CO)5Cl][NEt4] was prepared in 30 min (74% yield), while [(η6-C6H5OMe)Cr(CO)3] can be prepared in 45% after 4 h.  相似文献   

18.
A series of carbinamines (α,α,α-trisubstituted amines) have been prepared in a simple and efficient one-pot procedure by the addition of Grignard reagents to a series of aliphatic, aromatic and heteroaromatic nitriles. The resulting magnesium imines are subsequently converted to the desired amine after treatment with Ti(Oi-Pr)4 and additional microwave heating. Key to this procedure is the use of microwave heating for both steps of the reaction protocol, which significantly improves both reaction yields and reduces reaction times. In general, the Grignard addition reaction is complete within 5-10 min at 100 °C followed by conversion with Ti(Oi-Pr)4 and additional microwave heating to give the target amines in good yields.  相似文献   

19.
Grafting of methyl methacrylate (MMA) onto delignified Grewia optiva fiber using ascorbic acid/H2O2 as an initiator was carried out under microwave irradiation. The effects of varying the microwave power, exposure time, and concentration of initiator and monomer of graft polymerization were studied to obtain maximum grafting percentage (26.54%). The experimental results showed that the optimal conditions for grafting were: exposure time, 10min; microwave power, 110 W; ascorbic acid concentration, 3.74mol/L × 10?2; H2O2 concentration, 0.97mol/L × 10?1; monomer concentration, 1.87mol/L × 10?1. The graft copolymers were characterized by Fourier transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA).  相似文献   

20.
Pure orthorhombic phase Bi2WO6 powders were synthesized by a microwave hydrothermal method in the absence of surfactants and templates, using Bi(NO3)3·5H2O and Na2WO4·2H2O as raw materials. Photocatalytic properties of the samples prepared at different reaction temperatures were also studied with Rhodamine B (RhB) solution as the target catabolite under visible light. The results indicate that flower-like Bi2WO6 powders can be obtained by controlling the microwave reaction temperatures in the absence of any additives. The growth of flower-like Bi2WO6 powders is a multistage layer assembly process, in which the flower-like Bi2WO6 self-assembling with the uniform size about 2 μm is synthesized at 180 °C. At the same time, the photocatalytic reaction rate constant (k) gets up to 0.04167/min and the degradation rate of RhB solution is more than 96 % after being irradiated under visible light for 70 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号