首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A spherical polyacrylonitrile–TiO2 composite adsorbent was prepared and its strontium removal potential was investigated. The Langmuir equation fixed well the equilibrium data. The value of ∆H° = 8.943 kJ/mol and ∆G° = 6.291 kJ/mol at 298 K indicate that the adsorption of strontium onto TiO2/PAN composite adsorbent is an endothermic and non-spontaneous reaction. The kinetic process was described by a pseudo-second-order rate model very well.  相似文献   

2.
A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63 mg Cr(VI)/g at initial pH of 3.0 at 30 °C for the particle size of 1.00–1.25 mm with the use of 12.5, 16.5 and 2.1 g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

3.
A laboratory batch study has been performed to study the effect of various physic-chemical factors such as initial metal ion concentration, solution pH, and amount of adsorbent, contact time and temperature on the adsorption characteristics of zinc (Zn2+) metal ions onto kaolin. It has been found that the amount of adsorption of zinc metal ion increases with initial metal ion concentration, contact time, solution pH but decreases with the amount of adsorbent and temperature of the system. Kinetic experiments clearly indicate that adsorption of zinc metal ion (Zn2+) on kaolin is a two steps process: a very rapid adsorption of zinc metal ion to the external surface is followed by possible slow decreasing intra-particle diffusion in the interior of the adsorbent which has also been confirmed by intra-particle diffusion model. The equilibrium time is found to be in the order of 60 min. Overall the kinetic studies showed that the zinc adsorption process followed pseudo-second-order kinetics among pseudo-first-order and intra-particle diffusion model. The different kinetic parameters including rate constant are determined at different initial metal ion concentration, solution pH, amount of adsorbent and temperature respectively. The equilibrium adsorption results are analyzed by both Langmuir and Freundlich models to determine the mechanistic parameters associated with the adsorption process. The value of separation factor, RL from Langmuir equation also gives an indication of favorable adsorption. Finally thermodynamic parameters are determined at three different temperatures and it has been found that the adsorption process is exothermic due to negative ΔH° accompanied by decrease in entropy change and Gibbs free energy change (ΔG°).  相似文献   

4.
The biosorption of nickel(II) ions from aqueous solution by Acacia leucocephala bark was studied in a batch adsorption system as a function of pH, initial metal ion concentration, adsorbent dosage, contact time and temperature. The maximum Ni(II) adsorption was obtained at pH 5. Further, the biosorbents were characterized by Fourier Transformer Infrared Spectroscopy (FTIR). The experimental data were analysed using three sorption kinetic models viz., the pseudo-first- and second-order equations and the intraparticle diffusion model. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process. The equilibrium nature of Ni(II) adsorption at different temperatures of 30, 40 and 50 °C have been described by the Langmuir and Freundlich isotherm models. The equilibrium data fit well Langmuir isotherm. The monolayer adsorption capacity of A. leucocephala bark as obtained from Langmuir isotherm at 30 °C was found to be 294.1 mg/g. The Chi-square (χ2) and Sum of the square errors (SSE) tests were also carried out to find the best fit adsorption isotherm and kinetic model. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were calculated indicating that this system was a spontaneous and endothermic process. Present investigation emphasized that A. leucocephala bark may be utilized as a low cost adsorbent for nickel removal.  相似文献   

5.
A type of Nb2O5⋅3H2O was synthesized and its phosphate removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The phosphate adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model with which the maximum P adsorption capacity was estimated to be 18.36 mg-P g−1. The peak appearing at 1050 cm−1 in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The positive values of both ΔH° and ΔS° suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. ΔG° values obtained were negative indicating a spontaneous adsorption process. A phosphate desorbability of approximately 68% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. The immobilization of phosphate probably occurs by the mechanisms of ion exchange and physicochemical attraction. Due to its high adsorption capacity, this type of hydrous niobium oxide has the potential for application to control phosphorus pollution.  相似文献   

6.
This study evaluated the feasibility of Rhodamine-B dye (Rh B) removal from aqueous solution, using Lead-Iron Oxide nanoparticles Loaded Activated Carbon (FePbO@AC). The parameters like pH, contact time, adsorbent/adsorbate dosage and temperature on adsorption was studied. Optimized conditions are pH of 7.0, 25?min contact time, 50?ppm of dye concentration and 200?mg of adsorbent concentration. The kinetics of adsorption was calculated using pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The calculations revealed that the pseudo-second-order kinetic equation best-fit the adsorption data. The Langmuir isotherm model best fit the equilibrium data. The maximum sorption capacity (Qmax) for dye is 1000?mg Rh B/g FePbO@AC. Change in entropy (ΔS), Gibb’s free energy change (ΔG), and enthalpy (ΔH) were calculated for the adsorption of Rh B dye.  相似文献   

7.
Polystyrene waste are non-biodegradable materials that causes harm to the environment. Red brick waste resulting from demolition and reconstruction are an obstacle to its disposal. To solve this problem and meet modern sustainability standards, this study utilized polystyrene (PS) foam and red brick construction waste to prepare composite materials (PS/RB-Cs) as a new efficient adsorbent. The PS/RB-Cs composite as an adsorbent was characterized using a UV–Vis Spectrophotometer, Energy Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscope (SEM), and transmission electron microscopy (TEM), which showed a clear spectrum shift after using PS/RB-Cs as an adsorbent. The PS/RB-Cs was characterized by a porous structure with higher surface area and high stability. The efficiency of the PS/RB-Cs in treating water contaminated with heavy metals such as cobalt and nickel was verified under different initial concentrations, temperatures, doses, pH, and contact times. The experimental qe values were consistent with the qe calculated values and were approximately 8 mg/g. The adsorption isotherm models showed that the adsorption results fit the Langmuir, Freundlich and Flory-Huggins isotherm models and that the process was favorable. By applying pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models, the adsorption process was found to follow PSO. The findings of this research validated that the composite material that was prepared serves as a potent adsorbent for the treatment of water that has been polluted by heavy metals.  相似文献   

8.
Global attention is increasingly focused on the adverse health and environmental impacts of textile dyes, marking the necessity for effective and sustainable dye remediation strategies in industrial wastewater. This study introduces a novel, eco-friendly activated carbon produced from olive stones (OLS), a readily available by-product of the olive oil industry. The OLS was chemically activated with H3PO4 and KOH, creating two materials: OLS-P and OLS-K, respectively. These were then utilized as cost-effective adsorbents for the removal of methylene blue (MB) dye. The activated materials were characterized via X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), iodine number, and pHpzc analysis, with the zero-point charge determined as approximately pH 1 for OLS-P and pH 8 for OLS-K. Batch adsorption experiments conducted at various temperatures revealed that adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. Temperature was found to significantly impact adsorption performance, with OLS-K demonstrating a substantial increase in adsorption capacity (qe) from 6.27 mg/g at 23˚C to 94.7 mg/g at 32 ˚C. Conversely, OLS-P displayed a decrease in qe from 16.78 mg/g at 23 ˚C to 3.67 mg/g at 32 ˚C as temperature increased. The study highlights the potential of KOH-treated olive stones as a promising, cost-efficient adsorbent for methylene blue remediation from wastewater.  相似文献   

9.
YalÇin  Mehmet  GÜrses  Ahmet  Doğar  Çetin  SÖZBİLİr  Mustafa 《Adsorption》2005,10(4):339-348
This study investigates the adsorption kinetics of CTAB (cethyltrimethylammonium bromide), a cationic surfactant, onto PAC from aqueous solution with respect to the initial CTAB concentration at 20C. The pseudo-first-order, second-order kinetic models and intraparticle diffusion model were used to describe the kinetic data and the rate constants were calculated. The rate parameter, ki, of intraparticle diffusion, the rate parameter, k2, of the pseudo-second-order and k1, the rate parameter for the pseudo-first-order mechanism were compared. It was found that the pseudo-second-order adsorption mechanism is predominant and the overall rate of the CTAB adsorption process appears to be controlled by more than one step, namely both the external mass transfer and intraparticle diffusion mechanisms.  相似文献   

10.

In order to separate and pre-concentrate uranium from aqueous phase, a novel silica-based adsorbent was prepared by impregnating nalidixic acid (HNA) into a macroreticular silica/polymer composite support (SiO2-P) with a mean diameter of 60 μm. Adsorption behavior of uranium from aqueous solution onto the adsorbent was studied. Experimental results indicated that HNA/SiO2-P showed strong adsorption for uranium in a wide range of pH from 3.5 to 10.0, and the maximum adsorption capacity was 35.4 mg g−1. In addition, HNA/SiO2-P exhibited good selectivity for U(VI) and showed weak or bare adsorption affinity to foreign ions. Kinetic and isotherm of uranium adsorption were in accordance with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model, respectively. Moreover, U(VI) sorption was found to be an endothermic reaction and spontaneous under experimental state. The synthesized adsorbent showed an admirable stability at lower pH values in aqueous solution.

  相似文献   

11.
In our current research, an intriguing magnetic nano sorbent Fe3O4@Zr-MOF was synthesized in the lab. We used this adsorbent for successfully removing tetracycline (TC) from water. We performed a number of experiments and studies to further support this, including the following: vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller surface area (BET). Our studies have determined that the Fe3O4@Zr-MOF boasts a considerable surface area of 868 m2/g with the highest adsorption capacity (qmax) of 942.12 mg/g. Study the factors that effect on adsorption process such as pH, TC concentration, adsorbent dose, and temperature. The adsorption isotherm was fitted to the Langmuir equation, whereas the kinetic isotherm to the pseudo-second-order equation. The adsorption process was chemisorption as well as the adsorption energy was 20 kJ/mol. Adsorption thermodynamics indicated that the adsorption process was both endothermic and spontaneous. As temperatures increased, the amounts of materials absorbed also increased. The Fe3O4@Zr-MOF has magnetic properties as it easily to remove from the solution after adsorption process. The adsorbent was used for five cycles with high efficiency and without change in the chemical composition as well as the XRD was the same before and after reusability. The mechanism of the interaction between Fe3O4@Zr-MOF and TC was expected on: Electrostatic interaction, π-π interaction, hydrogen bonding, and pore filling. The adsorption results were optimized using Box Behnken-design (BBD).  相似文献   

12.
In this study, pine leaves powder (PiP) and dandelion flower powder (DFP) were repurposed to synthesize layered double hydroxides (LDHs) to form a base for sorbents used in perchlorate remediation from wastewater. The effects of the adsorbent dose, pH, thermodynamics, and coexisting ions were evaluated in batch experiments. The results revealed that 0.1 g adsorbent (PiP-LDH and DFP-LDH) removed 97% and 93% of perchlorate contaminants, respectively. In this study, the correlation coefficient of pseudo-second-order was higher than pseudo-first-order for all the LDHs. The kinetic and isotherm studies showed the best uptake of perchlorate in the short time was by PiP-LDH, followed by DFP-LDH (20 min and 40 min, respectively). The calculated and experimental values of adsorption at the equilibrium state also concurred with the pseudo-second-order model. The prepared LDHs were mesoporous. The surface area of PiP-LDH provided more adsorption sites, rendering it more suitable for perchlorate adsorption compared with the other two LDHs. The model suggests Physico-chemical interactions behind the sorption of perchlorate by LDHs. The adsorption was more influenced by anions i.e, PO43− > SO42− > NO3 than monovalent anions due to the increase in the charge radius values. The prepared LDHs could be of great benefit to the environmental remediation of wastewater bodies.  相似文献   

13.
Zirconyl-molybdopyrophosphate-tributyl phosphate (ZMPP-TBP) was a novel organic-inorganic composite adsorbent prepared by co-precipitation method and used in the adsorption of uranium from aqueous solution in batch adsorption experiments. The as-obtained product was characterized using SEM, energy dispersive X-ray spectroscopy (EDX), XRD and BET-N2 adsorption measurements. The study had been conducted to investigate the effects of solution pH, temperature, contact time, initial concentration and coexisting ions. A maximum removal of 99.31% was observed for an initial concentration 5 mg/L, at pH 6.0 and an adsorbent dose of 1.0 g/L. The isothermal data were fitted with both Langmuir and Freundlich equations, but the data fitted the former better than the latter. According to the evaluation using the Langmuir equation, the maximum adsorption capacity of uranium (VI) was 196.08 mg/g at 293 K and pH 6.0. The pseudo-first-order kinetic model and pseudo-second-order kinetic model were used to describe the kinetic data, and the pseudo-second-order kinetic model was better. The thermodynamic parameter ΔG was calculated, the negative ΔG values of uranium (VI) at different temperature showed that the adsorption process was spontaneous. The good reusability of ZMPP-TBP also indicated that the ZMPP-TBP was a very promising adsorbent for uranium adsorption from aqueous solution.  相似文献   

14.
This work presents an evaluation of iron and cadmium adsorption in sediment of the Furnas Hydroelectric Plant Reservatory located in Alfenas, Minas Gerais (Brazil). The metal determination was done employing a flow injection analysis (FIA) with an on-line filtering system. As detection techniques, flame atomic absorption spectrometry (FAAS) for iron and thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) for cadmium determinations were used. The developed methodology presented good limits of detection, being 190 μg L−1 for iron and 1.36 μg L−1 for cadmium, and high sampling frequency for both metals 144 and 60 readings h−1 for iron and cadmium, respectively. Both metals obey the Langmuir model, with maximum adsorptive capacity of 0⋅169 mg g−1 for iron and 7⋅991 mg g−1 for cadmium. For iron, a pseudo-first-order kinetic model was obtained with a theoretical Qe = 9⋅8355 mg g−1 (experimental Qe = 9⋅5432 mg  g−1), while for cadmium, a pseudo-second-order kinetic model was obtained, with a theoretical Qe = 0.3123 mg g−1 (experimental Qe = 0⋅3052 mg g−1).  相似文献   

15.
The objective of this work is to study the removal of malachite green (MG) from water by adsorbents obtained from pyrolysis of two paper industry waste materials: one de-inking paper sludge (HP) and one organic sludge from virgin pulp mill (RT). Both adsorbents showed elevated MG removal. Maximum adsorption Q 0 obtained by Langmuir equation was higher for the adsorbent from HP (HP-3, 982 mg/g) than RT (RT-3, 435 mg/g). However, K L (Langmuir) and 1/n (Freundlich) indicated that affinity and intensity of adsorption is higher for the adsorbents from RT. Thermal analysis (TG, DTG and DTA) of adsorbents before and after MG removal was performed in N2 atmosphere.  相似文献   

16.
During the recycling of exhausted lead-acid battery, large amount of wastewater is discharged, which contains the toxic Pb(II) ions in high concentration. In this study, the granular activated carbon after modification with sulfuric acid has been used to remove the Pb(II) ions from this wastewater. Adsorbents were characterized using Fourier Transform Infrared, Scanning Electron Microscope, and X-Ray Diffraction analyzer. Taguchi orthogonal L16 array (4^3) was used for batch adsorption study with four levels of three factors initial pH, adsorbent dose, and contact time. Optimum level of parameters was fourty + nd pH 4.5, time 240 min, and dose 0.05 g/50 mL using signal-to-noise ratio (larger-the-better response). Analysis of variance technique was used to signify the adsorption experiment model. The effect of parameters on uptake capacity of adsorbent has been evaluated. Maximum adsorbent capacity for Pb(II) uptake from wastewater of battery recycling unit was found 8.19 mg/g after modification with sulfuric acid. To further understand the mechanism of adsorption, isotherm and kinetic studies were carried out. Experimental data were well fitted with Langmuir isotherm model and pseudo-second-order kinetic model. The study suggested that H2SO4 modified granular activated carbon can be potentially used to remove Pb(II) from lead-acid battery recycle wastewater.  相似文献   

17.
Calculations are made using the equations Δr G = Δr H − TΔr S and Δr X = Δr H − Δr Q where Δr X represents the free energy change when the exchange of absorbed thermal energy with the environment is represented by Δr Q. The symbol Q has traditionally represented absorbed heat. However, here it is used specifically to represent the enthalpy listed in tabulations of thermodynamic properties as (H T  − H 0) at T = 298.15 K, the reason being that for a given substance TS equals 2.0 Q for solid substances, with the difference being greater for liquids, and especially gases. Since Δr H can be measured, and is tangibly the same no matter what thermodynamics are used to describe a reaction equation, a change in the absorbed heat of a biochemical growth process system as represented by either Δr Q or TΔr S would be expected to result in a different calculated value for the free energy change. Calculations of changes in thermodynamic properties are made which accompany anabolism; the formation of anabolic, organic by-products; catabolism; metabolism; and their respective non-conservative reactions; for the growth of Saccharomyces cerevisiae using four growth process systems. The result is that there is only about a 1% difference in the average quantity of free energy conserved during growth using either Eq. 1 or 2. This is because although values of TΔr S and Δr Q can be markedly different when compared to one another, these differences are small when compared to the value for Δr G or Δr X.  相似文献   

18.
This study investigated a new adsorbent prepared from lignin modified organoclay for the removal of Pb2+ and UO2 2+ from aqueous solutions. The characterization of new adsorbent was performed by FT-IR and XRD. Adsorption of Pb2+ and UO2 2+ species in aqueous solution as a function of ion concentration, pH, temperature and time of adsorption was investigated in detail. The adsorption data were analyzed by using the Langmuir, Freundlich and Dubinin-Radushkevich models. The monolayer adsorption capacities of organoclay–lignin were 0.12 mol kg?1 and 0.42 mol kg?1 for Pb2+ and UO2 2+, respectively. The experimental kinetic data were analyzed by using pseudo-second-order kinetic and intra-particle diffusion models. The proposed adsorption mechanism follows a pseudo-second-order kinetic and endothermic because of increasing disorderliness at adsorbate/adsorbent interface.  相似文献   

19.

The change in the thermodynamic properties of triclosan adsorption on three activated carbons with the different surface chemistry was studied through immersion calorimetry and equilibrium data; the amount adsorbed of triclosan (Q) during calorimetry was determined and correlated with the energy associated with adsorbate–adsorbent interactions in the adsorption process. It was noted that triclosan adsorption capacity decreases with an increase in oxygenated surface groups. For an activated carbon oxidized with HNO3 (OxAC), the amount adsorbed was 8.50?×?10?3 mmol g?1, for a activated carbon without modification (GAC) Q?=?10.3?×?10?3 mmol g?1 and for a activated carbon heated at 1073 K (RAC1073) Q?=?11.4?×?10?3 mmol g?1. The adsorbed amounts were determined by adjusting the isotherms to the Sips model. For the activated carbon RAC1073, the immersion enthalpy (ΔHimm) was greater than those of the other two activated carbons due to the formation of interactions with the solvent (ΔHimmOxAC?=?? 27.3 J g?1?<?ΔHimmGAC?=?? 40.0 J g?1?<?ΔHimm RAC1073?=???60.7 J g?1). The changes in the interaction enthalpy and Gibbs energy are associated with adsorbate–adsorbent interactions and side interactions such as the adsorbate–adsorbate and adsorbate–solvent interactions.

  相似文献   

20.
  • Manganese dioxide/silver (MnO2/Ag) nanoparticles were fabricated by using KMnO4-NaBH4 redox reaction at room temperature. The optical and structural properties of MnO2/Ag were determined using UV–visible and Fourier transform infrared spectroscopies. The morphology was established with scanning and transmission electron microcopies, and X-ray diffraction. MnO2/Ag showed excellent adsorbing activity to the removal of Congo red. The various kinetic models were used to determine the rate of dye removal. Congo red adsorption onto MnO2Ag proceeds through the pseudo-second-order kinetic model. Langmuir adsorption capacity (Q0max = 97.1 mg/g), and sorption intensity (n = 1.6) were estimated with Langmuir and Freundlich adsorption isotherm models for 250 mg/L Congo red. Elovich model suggest the adsorption of Congo red with the MnO2Ag proceeds through the film diffusion. The positive values of enthalpy changes (ΔH0), entropy changes (ΔS0), and negative Gibbs free energy changes (ΔG0) showed that the Congo red adsorption process was endothermic, spontaneous, and chemisorption process followed with physical mechanism. The results showed that the removal efficiency decreases from 98% to 89% after the six consecutive experiments.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号