首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

2.
Syzygium cumini (Pomposia) is a well-known aromatic plant belonging to the family Myrtaceae, and has been reported for its various traditional and pharmacological potentials, such as its antioxidant, antimicrobial, anti-inflammatory, and antidiarrheal properties. The chemical composition of the leaf essential oil via gas chromatography–mass spectrometry (GC/MS) analysis revealed the identification of fifty-three compounds representing about 91.22% of the total oil. The identified oil was predominated by α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-limonene (8.08%), β-pinene (7.33%), and α-terpineol (5.38%). The tested oil revealed a moderate cytotoxic effect against human liver cancer cells (HepG2) with an IC50 value of 38.15 ± 2.09 µg/mL. In addition, it effectively inhibited acetylcholinesterase with an IC50 value of 32.9 ± 2.1 µg/mL. Furthermore, it showed inhibitory properties against α-amylase and α-glucosidase with IC50 values of 57.80 ± 3.30 and 274.03 ± 12.37 µg/mL, respectively. The molecular docking studies revealed that (E)-β-caryophyllene, one of the major compounds, achieved the best docking scores of −6.75, −5.61, and −7.75 for acetylcholinesterase, α-amylase, and α-glucosidase, respectively. Thus, it is concluded that S. cumini oil should be considered as a food supplement for the elderly to enhance memory performance and for diabetic patients to control blood glucose.  相似文献   

3.
Medicinal plants offer imperative sources of innovative chemical substances with important potential therapeutic effects. Among them, the members of the genus Inula have been widely used in traditional medicine for the treatment of several diseases. The present study investigated the antioxidant (DPPH, ABTS and FRAP assays) and the in vitro anti-hyperglycemic potential of aerial parts of Inula viscosa (L.) Aiton (I. viscosa) extracts through the inhibition of digestive enzymes (α-amylase and α-glucosidase), responsible of the digestion of poly and oligosaccharides. The polyphenolic profile of the Inula viscosa (L.) Aiton EtOAc extract was also investigated using HPLC-DAD/ESI-MS analysis, whereas the volatile composition was elucidated by GC-MS. The chemical analysis resulted in the detection of twenty-one polyphenolic compounds, whereas the volatile profile highlighted the occurrence of forty-eight different compounds. Inula viscosa (L.) Aiton presented values as high as 87.2 ± 0.50 mg GAE/g and 78.6 ± 0.55mg CE/g, for gallic acid and catechin, respectively. The EtOAc extract exhibited the higher antioxidant activity compared to methanol and chloroform extracts in different tests with (IC50 = 0.6 ± 0.03 µg/mL; IC50 = 8.6 ± 0.08 µg/mL; 634.8 mg ± 1.45 AAE/g extract) in DPPH, ABTS and FRAP tests. Moreover, Inula viscosa (L.) Aiton leaves did show an important inhibitory effect against α-amylase and α-glucosidase. On the basis of the results achieved, such a species represents a promising traditional medicine, thanks to its remarkable content of functional bioactive compounds, thus opening new prospects for research and innovative phytopharmaceuticals developments.  相似文献   

4.
This work aimed to study the chemical composition, cholinesterase inhibitory activity, and enantiomeric analysis of the essential oil from the aerial parts (leaves and flowers) of the plant Lepechinia paniculata (Kunth) Epling from Ecuador. The essential oil (EO) was obtained through steam distillation. The chemical composition of the oil was evaluated by gas chromatography, coupled to mass spectrometry (GC–MS) and a flame ionization detector (GC-FID). The analyses led to the identification of 69 compounds in total, of which 40 were found in the leaves and 29 were found in the flowers of the plant. The major components found in the oil were 1,8-Cineole, β-Pinene, δ-3-Carene, α-Pinene, (E)-Caryophyllene, Guaiol, and β-Phellandrene. Flower essential oil showed interesting selective inhibitory activity against both enzymes AChE (28.2 ± 1.8 2 µg/mL) and BuChE (28.8 ± 1.5 µg/mL). By contrast, the EO of the leaves showed moderate mean inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), with IC50 values of 38.2 ± 2.9 µg/mL and 47.4 ± 2.3 µg/mL, respectively.  相似文献   

5.
This study investigated the in vitro inhibitory potential of different solvent extracts of leaves of Barbeya oleoides on key enzymes related to type 2 diabetes mellitus (α-glucosidase and α-amylase) in combination with an aggregation assay (using 0.01% Triton X-100 detergent) to assess the specificity of action. The methanol extract was the most active in inhibiting α-glucosidase and α-amylase, with IC50 values of 6.67 ± 0.30 and 25.62 ± 4.12 µg/mL, respectively. However, these activities were significantly attenuated in the presence of 0.01% Triton X-100. The chemical analysis of the methanol extract was conducted utilizing a dereplication approach combing LC-ESI-MS/MS and database searching. The chemical analysis detected 27 major peaks in the negative ion mode, and 24 phenolic compounds, predominantly tannins and flavonol glycosides derivatives, were tentatively identified. Our data indicate that the enzyme inhibitory activity was probably due to aggregation-based inhibition, perhaps linked to polyphenols.  相似文献   

6.
Croton ferrugineus Kunth is an endemic species of Ecuador used in traditional medicine both for wound healing and as an antiseptic. In this study, fresh Croton ferrugineus leaves were collected and subjected to hydrodistillation for extraction of the essential oil. The chemical composition of the essential oil was determined by gas chromatography equipped with a flame ionization detector and gas chromatography coupled to a mass spectrometer using a non-polar and a polar chromatographic column. The antibacterial activity was assayed against three Gram-positive bacteria, one Gram-negative bacterium and one dermatophyte fungus. The radical scavenging properties of the essential oil was evaluated by means of DPPH and ABTS assays. The chemical analysis allowed us to identify thirty-five compounds representing more than 99.95% of the total composition. Aliphatic sesquiterpene hydrocarbon trans-caryophyllene was the main constituent with 20.47 ± 1.25%. Other main compounds were myrcene (11.47 ± 1.56%), β-phellandrene (10.55 ± 0.02%), germacrene D (7.60 ± 0.60%), and α-humulene (5.49 ± 0.38%). The essential oil from Croton ferrugineus presented moderate activity against Candida albicans (ATCC 10231) with an MIC of 1000 μg/mL, a scavenging capacity SC50 of 901 ± 20 µg/mL with the ABTS method, and very strong antiglucosidase activity with an IC50 of 146 ± 20 µg/mL.  相似文献   

7.
Red fruits and their juices are rich sources of polyphenols, especially anthocyanins. Some studies have shown that such polyphenols can inhibit enzymes of the carbohydrate metabolism, such as α-amylase and α-glucosidase, that indirectly regulate blood sugar levels. The presented study examined the in vitro inhibitory activity against α-amylase and α-glucosidase of various phenolic extracts prepared from direct juices, concentrates, and purees of nine different berries which differ in their anthocyanin and copigment profile. Generally, the extracts with the highest phenolic content—aronia (67.7 ± 3.2 g GAE/100 g; cyanidin 3-galactoside; chlorogenic acid), pomegranate (65.7 ± 7.9 g GAE/100 g; cyanidin 3,5-diglucoside; punicalin), and red grape (59.6 ± 2.5 g GAE/100 g; malvidin 3-glucoside; quercetin 3-glucuronide)—showed also one of the highest inhibitory activities against α-amylase (326.9 ± 75.8 μg/mL; 789.7 ± 220.9 μg/mL; 646.1 ± 81.8 μg/mL) and α-glucosidase (115.6 ± 32.5 μg/mL; 127.8 ± 20.1 μg/mL; 160.6 ± 68.4 μg/mL) and, partially, were even more potent inhibitors than acarbose (441 ± 30 μg/mL; 1439 ± 85 μg/mL). Additionally, the investigation of single anthocyanins and glycosylated flavonoids demonstrated a structure- and size-dependent inhibitory activity. In the future in vivo studies are envisaged.  相似文献   

8.
Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.  相似文献   

9.
The study aims to determine the secondary metabolites of Hypericum androsaemum L. extracts by liquid chromatography-high resolution mass spectrometry (LC-HRMS), and investigate the antioxidant and cytotoxic activities of the plant. Cytotoxic activity was evaluated by MTT assay, and apoptosis induction abilities on human prostate adenocarcinoma (PC-3), and hepatocellular carcinoma (Hep G2) cell lines. Accordingly, major secondary metabolites were found as hederagenin (762 ± 70.10 μg/g) in the leaves dichloromethane (LD), herniarin (167 ± 1.50 μg/g) in fruit dichloromethane (FD), (-)-epicatechin (6538 ± 235.36 μg/g) in the leaves methanol (LM), (-)-epigallocatechin gallate (758 ± 20.46 μg/g) in the fruit methanol (FM), and caffeic acid (370 ± 8.88 μg/g) in the fruit water (FW), and (3313 ± 79.51 μg/g) in the leaves water (LW) extracts. LM exerted strong antioxidant activity in DPPH free (IC50 10.94 ± 0.08 μg/mL), and ABTS cation radicals scavenging (IC50 9.09 ± 0.05 μg/mL) activities. FM exhibited cytotoxic activity with IC50 values of 73.23 ± 3.06 µg/mL and 31.64 ± 2.75 µg/mL on PC-3 and Hep G2 cell lines, respectively. Being the richest extract in terms of quillaic acid (630 ± 18.9 μg/g), which is a well-known cytotoxic triterpenoid with proven apoptosis induction ability on different cells, FM extract showed apoptosis induction activity with 64.75% on PC-3 cells at 50 μg/mL concentration. The study provides promising results about the potential of Hypericum androsaemum on cancer prevention.  相似文献   

10.
Marine algae are a promising source of potent bioactive agents against oxidative stress, diabetes, and inflammation. However, the possible therapeutic effects of many algal metabolites have not been exploited yet. In this regard, we explored the therapeutic potential of Enteromorpha intestinalis extracts obtained from methanol, ethanol, and hexane, in contrasting oxidative stress. The total phenolic (TPC) and flavonoids (TFC) content were quantified in all extracts, with ethanol yielding the best values (about 60 and 625 mg of gallic acid and rutin equivalents per gram of extract, respectively). Their antioxidant potential was also assessed through DPPH, hydroxyl radical, hydrogen peroxide, and superoxide anion scavenging assays, showing a concentration-dependent activity which was greater in the extracts from protic and more polar solvents. The α-amylase and α-glucosidase activities were estimated for checking the antidiabetic capacity, with IC50 values of about 3.8 µg/mL for the methanolic extract, almost as low as those obtained with acarbose (about 2.8 and 3.3 µg/mL, respectively). The same extract also showed remarkable anti-inflammatory effect, as determined by hemolysis, protein denaturation, proteinase and lipoxygenase activity assays, with respectable IC50 values (about 11, 4, 6, and 5 µg/mL, respectively), also in comparison to commercially used drugs, such as acetylsalicylic acid.  相似文献   

11.
Rhynchanthus beesianus W. W. Smith, an edible, medicinal, and ornamental plant, is mainly cultivated in China and Myanmar. The essential oil (EO) from R. beesianus rhizome has been used as an aromatic stomachic in China. The chemical composition and biological activities of EO from R. beesianus rhizome were reported for the first time. Based on gas chromatography with flame ionization or mass selective detection (GC-FID/MS) results, the major constituents of EO were 1,8-cineole (47.6%), borneol (15.0%), methyleugenol (11.2%), and bornyl formate (7.6%). For bioactivities, EO showed a significant antibacterial activity against Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Proteus vulgaris with the diameter of the inhibition zone (DIZ) (8.66–10.56 mm), minimal inhibitory concentration (MIC) (3.13–6.25 mg/mL), and minimal bactericidal concentration (MBC) (6.25–12.5 mg/mL). Moreover, EO (128 μg/mL) significantly inhibited the production of proinflammatory mediators nitric oxide (NO) (92.73 ± 1.50%) and cytokines tumor necrosis factor-α (TNF-α) (20.29 ± 0.17%) and interleukin-6 (IL-6) (61.08 ± 0.13%) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages without any cytotoxic effect. Moreover, EO exhibited significant acetylcholinesterase (AChE) inhibitory activity (the concentration of the sample that affords a 50% inhibition in the assay (IC50) = 1.03 ± 0.18 mg/mL) and moderate α-glucosidase inhibition effect (IC50 = 11.60 ± 0.25 mg/mL). Thus, the EO could be regarded as a bioactive natural product and has a high exploitation potential in the cosmetics and pharmaceutical industries.  相似文献   

12.
Coffee cherry is a rich source of chlorogenic acids (CGAs) and caffeine. In this study we examined the potential antioxidant activity and enzyme inhibitory effects of whole coffee cherries (WCC) and their two extracts on α-amylase, α-glucosidase and acetylcholinesterase (AChE) activities, which are targets for the control of diabetes and Alzheimer’s diseases. Whole coffee cherry extract 40% (WCCE1) is rich in chlorogenic acid compounds, consisting of a minimum of 40% major isomers, namely 3-caffeoylquinic acids, 4-caffeoylquinic acids, 5-caffeoylquinic acids, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 4-feruloylquinc acid, and 5-feruloylquinc acid. Whole coffee cherry extract 70% (WCCE2) is rich in caffeine, with a minimum of 70%. WCCE1 inhibited the activities of digestive enzymes α-amylase and α-glucosidase, and WCCE2 inhibited acetylcholinesterase activities with their IC50 values of 1.74, 2.42, and 0.09 mg/mL, respectively. Multiple antioxidant assays—including DPPH, ABTS, FRAP, ORAC, HORAC, NORAC, and SORAC—demonstrated that WCCE1 has strong antioxidant activity.  相似文献   

13.
Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 μg AAE/mg), total reducing power, (6.60 ± 1.17 μg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 μg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 μg/mL), and iron-chelating power (IC50 = 154.8 ± 2 μg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.  相似文献   

14.
The volatile components of essential oil (EO), SPME, and SPME of solvent extracts ( n -hexane, methanol, and water) obtained from fresh Serapias orientalis subsp. orientalis ( Soo ) were analyzed by GC-FID/MS. EO of Soo gave 11 compounds in the percentage of 99.97%; capronaldehyde (37.01%), 2-( E )-hexenal (23.19%), and n -nonanal (19.05%) were found to be major constituents. SPME GC-FID/MS analyses of fresh plant and solvent extracts of Soo revealed 7, 12, 7, and 4 compounds within the range of 99.7% to 99.9%. Limonene (76.5%, 41.7%, and 61.3%) was the major compound in SPMEs of the n -hexane and methanol extracts. α -Methoxy- p -cresol (52.9%) was the main component in its water extract. The antimicrobial activity of EO and the solvent extracts of Soo were screened against 9microorganisms. EO showed the best activity against Mycobacterium smegmatis , with 79.5 µg/mL MIC value. The n -hexane, methanol, and water extracts were the most active against the Staphylococcus aureus within the range of 81.25–125.0 µg/mL (MIC). IC 50 values for the lipase enzyme inhibitory activity of EO and solvent extracts ( n -hexane, methanol, and water) were determined to be 59.87 µg/mL, 64.03 µg/mL, 101.91 µg/mL, and 121.24 µg/mL, respectively.  相似文献   

15.
Propolis is a resinous natural product collected by honeybees (Apis mellifera and others) from tree exudates that has been widely used in folk medicine. The present study was carried out to investigate the fatty acid composition, chemical constituents, antioxidant, and xanthine oxidase (XO) inhibitory activity of Jordanian propolis, collected from Al-Ghour, Jordan. The hexane extract of Jordanian propolis contained different fatty acids, which are reported for the first time by using GC-FID. The HPLC was carried out to identify important chemical constituents such as fatty acids, polyphenols and α-tocopherol. The antioxidant and xanthine oxidase inhibitory activities were also monitored. The major fatty acid identified were palmitic acid (44.6%), oleic acid (18:1∆9cis, 24.6%), arachidic acid (7.4%), stearic acid (5.4%), linoleic acid (18:2∆9–12cis, 3.1%), caprylic acid (2.9%), lignoceric acid (2.6%), cis-11,14-eicosaldienoic acid (20:2∆11–14cis, 2.4%), palmitoleic acid (1.5%), cis-11-eicosenoic acid (1.2%), α–linolenic acid (18:3∆9–12–15cis, 1.1%), cis-13,16-docosadienoic acid (22:2∆13–16cis, 1.0%), along with other fatty acids. The major chemical constituents identified using gradient HPLC-PDA analysis were pinocembrin (2.82%), chrysin (1.83%), luteolin-7-O-glucoside (1.23%), caffeic acid (1.12%), caffeic acid phenethyl ester (CAPE, 0.79%), apigenin (0.54%), galangin (0.46%), and luteolin (0.30%); while the minor constituents were hesperidin, quercetin, rutin, and vanillic acid. The percentage of α-tocopherol was 2.01 µg/g of the lipid fraction of propolis. Antioxidant properties of the extracts were determined via DPPH radical scavenging. The DPPH radical scavenging activities (IC50) of different extracts ranged from 6.13 to 60.5 µg/mL compared to ascorbic acid (1.21 µg/mL). The xanthine oxidase inhibition (IC50) ranged from 75.11 to 250.74 µg/mL compared to allopurinol (0.38 µg/mL). The results indicate that the various flavonoids, phenolic compounds, α-tocopherol, and other constituents which are present in propolis are responsible for the antioxidant and xanthine oxidation inhibition activity. To evaluate the safety studies of propolis, the pesticide residues were also monitored by LC-MS-MS 4500 Q-Trap. Trace amounts of pesticide residue (ng/mL) were detected in the samples, which are far below the permissible limit as per international guidelines.  相似文献   

16.
Halophytes are the category of plants growing under harsh conditions of super-salinity, and are wide-spread in the coastal Mediterranean climatic conditions and desert oasis. They are adept at surviving through maintaining excessive production of enzymatic, and non-enzymatic secondary metabolites, especially phenolics and flavonoids that primarily work as anti-oxidants and phytoalexins. Five major halophyte species growing in the kingdom’s Qassim’s high-salted desert regions were investigated for confirming their traditionally used biological activity of sugar-control and anti-infectious properties. In this context, the comparative presence of phenolics, and flavonoids together with anti-microbial, anti-oxidants, and the anti-diabetic potentials of the plants’ extracts were investigated through the α-amylase inhibition method. The highest concentrations of phenolics and flavonoids were detected in Salsola imbricata (360 mg/g of the extract as Gallic-Acid-Equivalents/GAE, and 70.5 mg/g of the extract as Rutin-Equivalents/RE). In contrast, the lowest concentrations of phenolics and flavonoids were detected in Salsola cyclophylla (126.6 mg/g GAE, and 20.5 mg/g RE). The halophytes were found rich in trace elements, a factor for water-retention in high-salinity plants, wherein iron and zinc elements were found comparatively in higher concentrations in Aeluropus lagopoides (4113 µg/kg, and 40.1 µg/kg, respectively), while the copper was detected in higher concentration (11.1 µg/kg) in S. imbricata, analyzed through Inductively Coupled Plasma Optical Emission Spectrometric (ICP-OES) analysis. The anti-oxidant potentials and α-amylase enzyme inhibition-based anti-diabetic activity of S. imbricata was significantly higher than the other halophytes under study, wherein S. cyclophylla exhibited the lowest level of α-amylase inhibition. The maximum DPPH radicals’ (52.47 mg/mL), and α-amylase inhibitions (IC50 22.98 µg/mL) were detected in A. lagopoides. The anti-microbial activity against the Methicillin-Resistant Staphylococcus aureus was strongly exhibited by Zygophyllum simplex (33 mm Inhibition Zone-Diameter, 50 µg/mL Minimum-Inhibitory-Concentration), while Escherichia coli, Enterococcus faecalis, and Candida albicans growths were moderately inhibited by Tamarix aphylla. The current findings exhibited significant differences among the locally distributed halophytic plants species with regards to their bioactivity levels, anti-oxidant potentials, and the presence of trace elements. The ongoing data corroborated the plants’ traditional uses in infections and diabetic conditions. The enhanced local distribution of the plants’ diaspora and higher density of occurrence of these plants species in this region, in comparison to their normal climatic condition’s counterparts, seemed to be affected by humans’ use of the species as part of the traditional and alternative medicine over a period of long time.  相似文献   

17.
The essential oils of three specimens of Myrcia multiflora (A, B and C) and Eugenia florida were extracted by hydrodistillation, and the chemical compositions from the essential oils were identified by gas chromatography and flame ionization detection (CG/MS and CG-FID). The fungicide potential of the EOs against five fungicide yeasts was assessed: Candida albicans INCQS-40175, C. tropicalis ATCC 6258, C. famata ATCC 62894, C. krusei ATCC 13803 and C. auris IEC-01. The essential oil of the specimen Myrcia multiflora (A) was characterized by the major compounds: α-bulnesene (26.79%), pogostol (21.27%) and δ-amorphene (6.76%). The essential oil of the specimen M. multiflora (B) was rich in (E)-nerolidol (44.4%), (E)-γ-bisabolene (10.64%) and (E,E)-α-farnesene (8.19%), while (E)-nerolidol (92.21%) was the majority of the specimen M. multiflora (C). The sesquiterpenes seline-3,11-dien-6-α-ol (12.93%), eremoligenol (11%) and γ-elemene (10.70%) characterized the chemical profile of the EOs of E. florida. The fungal species were sensitive to the essential oil of M. multiflora (B) (9–11 mm), and the lowest inhibitory concentration (0.07%) was observed in the essential oil of M. multiflora (A) against the yeasts of C. famata. Fungicidal action was observed in the essential oils of M. multiflora (A) against C. famata, with an MIC of 0.78 µL/mL and 3.12 µL/mL; C. albicans, with an MFC of 50 µL/mL and M. multiflora (C) against C. albicans; and C. krusei, with a MFC of 50 µL/mL.  相似文献   

18.
Opuntia dillenii Ker Gawl. is one of the medicinal plants used for the prevention and treatment of diabetes mellitus (DM) in Morocco. This study aims to investigate the antihyperglycemic effect of Opuntia dillenii seed oil (ODSO), its mechanism of action, and any hypoglycemic risk and toxic effects. The antihyperglycemic effect was assessed using the OGTT test in normal and streptozotocin (STZ)-diabetic rats. The mechanisms of action were explored by studying the effect of ODSO on the intestinal absorption of d-glucose using the intestinal in situ single-pass perfusion technique. An Ussing chamber was used to explore the effects of ODSO on intestinal sodium-glucose cotransporter 1 (SGLT1). Additionally, ODSO’s effect on carbohydrate degrading enzymes, pancreatic α-amylase, and intestinal α-glucosidase was evaluated in vitro and in vivo using STZ-diabetic rats. The acute toxicity test on mice was performed, along with a single-dose hypoglycemic effect test. The results showed that ODSO significantly attenuated the postprandial hyperglycemia in normal and STZ-diabetic rats. Indeed, ODSO significantly decreased the intestinal d-glucose absorption in situ. The ex vivo test (Ussing chamber) showed that the ODSO significantly blocks the SGLT1 (IC50 = 60.24 µg/mL). Moreover, ODSO indu\ced a significant inhibition of intestinal α-glucosidase (IC50 = 278 ± 0.01 µg/mL) and pancreatic α-amylase (IC50 = 0.81 ± 0.09 mg/mL) in vitro. A significant decrease of postprandial hyperglycemia was observed in sucrose/starch-loaded normal and STZ-diabetic ODSO-treated rats. On the other hand, ODSO had no risk of hypoglycemia on the basal glucose levels in normal rats. Therefore, no toxic effect was observed in ODSO-treated mice up to 7 mL/kg. The results of this study suggest that ODSO could be suitable as an antidiabetic functional food.  相似文献   

19.
This study determined the antimicrobial and antioxidant activity of lemongrass (LO), thyme (TO), and oregano (OO) essential oils and ethanolic extracts of pomegranate peel (PPE) and grape pomace (GPE) as candidate ingredients for edible coatings. Antifungal effects against Botrytis cinerea and Penicillium spp. were tested using paper disc and well diffusion methods. Radical scavenging activity (RSA) was evaluated using 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid assays. Gas chromatography-mass spectrometry analysis identified limonene (16.59%), α-citral (27.45%), β-citral (27.43%), thymol (33.31%), paracymene (43.26%), 1,8-cineole (17.53%), and trans-caryphellene (60.84%) as major compounds of the essential oils. From both paper disc and well diffusion methods, LO recorded the widest zone of inhibition against tested microbes (B. cinerea and Penicillium spp.). The minimum inhibitory concentrations of LO against B. cinerea and Penicillium spp., were 15 µL/mL and 30 µL/mL, respectively. The highest (69.95%) and lowest (1.64%) RSA at 1 mg/mL were recorded for PPE and OO. Application of sodium alginate and chitosan-based coatings formulated with LO (15 or 30 µL/mL) completely inhibited spore germination and reduced the decay severity of ‘Wonderful’ pomegranate. Lemongrass oil proved to be a potential antifungal agent for edible coatings developed to extend shelf life of ‘Wonderful’ pomegranate.  相似文献   

20.
The species Cordia verbenacea DC (Boraginaceae), known as the whaling herb and camaradinha, is a perennial shrub species native to the Atlantic Forest. Its leaves are used in folk medicine as an anti-inflammatory, analgesic, antiulcerogenic and curative agent, in the form of teas or infusions for internal or topical use. The present study aimed to verify the cytotoxicity of the essential oil and the leishmanicidal and trypanocidal potential of C. verbenacea. The essential oil was characterized by GC-MS. The in vitro biological activity was determined by anti-Leishmania and anti-Trypanosoma assays. The cytotoxixity was determined using mammalian fibroblasts. The C. verbenacea species presented α-pinene (45.71%), β-caryophyllene (18.77%), tricyclo[2,2,1-(2.6)]heptane (12.56%) as their main compounds. The essential oil exhibited strong cytotoxicity at concentrations below 250 μg/mL (LC50 138.1 μg/mL) in mammalian fibroblasts. The potent anti-trypanosome and anti-promastigote activities occurred from the concentration of 62.5 μg/mL and was considered clinically relevant. The results also demonstrate that at low concentrations (<62.5 μg/mL), the essential oil of C. verbenacea managed to be lethal for these activities. This can be considered an indication of the power used in daily human consumption. Therefore, it can be concluded that the essential oil of C. verbenacea contains a compound with remarkable antiparasitic activities and requires further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号