首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na4SeO5, a Novel Pentaoxoselenate(VI) – Synthesis, Charakterisation, and Comparison with Na4MoO5 Na4SeO5 was prepared by high pressure solid state reaction at 500 °C and at a hydrostatic pressure of 2.5 Gpa from a mixture of Na2O and Na2SeO4 in silver crucibles and Na4MoO5 by solid state reaction at 450 °C from a mixture of Na2O and MoO3. The crystal structures of both new compounds were solved and refined using X‐ray powder methods (Profilematching Na4SeO5: P1, a = 988.3(1), b = 988.4(1), c = 558.6(1) pm, α = 96.25(1)°, β = 96.24(1)°, γ = 113.41(1)°, Rp = 0.0783, Rwp = 0.1037. Profilematching Na4MoO5: P1, a = 999.5(1), b = 1002.0(1), c = 565.1(1) pm, α = 96.54(1)°, β = 96.29(1)°, γ = 113.35(1)°, Rp = 0.0623, Rwp = 0.0867). Both compounds contain novel XO54– anions of approximately tetragonal pyramidal shape. The crystal structures are consistent with spectroscopic data (IR, Raman).  相似文献   

2.
The crystal structures among M1–M2–(H)‐arsenites (M1 = Li+, Na+, K+, Rb+, Cs+, Ca2+, Sr2+, Ba2+, Cd2+, Pb2+; M2 = Mg2+, Mn2+,3+, Fe2+,3+, Co2+, Ni2+, Cu2+, Zn2+) are less investigated. Up to now, only the structure of Pb3Mn(AsO3)2(AsO2OH) was described. The crystal structure of hydrothermally synthesized Na4Cd7(AsO3)6 was solved from the single‐crystal X‐ray diffraction data. Its trigonal crystal structure [space group R$\bar{3}$ , a = 9.5229(13), c = 19.258(4) Å, γ = 120°, V = 1512.5(5) Å3, Z = 3] represents a new structure type. The As atoms are arranged in monomeric (AsO3)3– units. The surroundings of the two crystallographically unique sodium atoms show trigonal antiprismatic coordination, and two mixed Cd/Na sites are remarkably unequal showing tetrahedral and octahedral coordinations. Despite the 3D connection of the AsO3 pyramids, (Cd,Na)Ox polyhedra and NaO6 antiprisms, a layer‐like arrangement of the Na atoms positioned in the hexagonal channels formed by CdO4 deformed tetrahedra and AsO3 pyramids in z = 0, 1/3, 2/3 is to be mentioned. These pseudo layers are interconnected to the 3D network by (Cd,Na)O6 octahedra. Raman spectra confirmed the presence of isolated AsO3 pyramids.  相似文献   

3.
Using hydrothermal methods, two manganese arsenates have been synthesized and characterized by single crystal X‐ray diffraction. The products Mn5(AsO4)2(HAsO4)2 ?4H2O ( 1 ) and Mn2AsO4(OH) ( 2 ), the Mn end‐members of the minerals villyaellenite and sarkinite, respectively, have been obtained (crystal data 1 : monoclinic, C2/c, a = 18.109(4), b = 9.332(2), c = 9.809(2) Å, β = 96.172(4)?, Z = 4; 2 : monoclinic, P21/c, a = 10.219(2), b = 13.613(2), c = 12.780(2) Å, β = 108.834(2)?, Z = 16). In both compounds a three‐dimensional framework of edge‐sharing MnO polyhedra is observed. Based on the availability of the all Mn2containing form of villyaellenite ( 1 ), the ordering scheme of the impurity cations of the natural samples could be confirmed. Magnetic susceptibility measurements of 1 indicate the presence of high‐spin Mn2+ ions. The comparison of the data on sarkinite ( 2 ) with the data obtained from the natural sample indicates that the mineral has either a very high Mn content, or an absence of impurity cation ordering.  相似文献   

4.
Selenoarsenates from Aqueous Solutions. Crystal Structures of Na3AsO3Se · 12 H2O and Na3AsSe4 · 9 H2O Selenoarsenates are obtained from aqueous solutions as colourless hydrated salts by reactions either of As2O3 with NaOH and selenium or of Na2Se with As2Se3 and selenium under strictly anaerobic conditions. Besides of tetrahedral anions AsO3Se3− and AsSe43−, extensive hydrogen bridge systems with rather strong O H …︁s Se bonds determine the structures. Na3AsO3Se · 12 H2O is orthorhombic (P212121) with a = 9.220(3), b = 13.018(3), c = 14.048(4) Å, Z = 4. Cubic Na3AsSe4 ·s 9H2O (P213) with a = 12.149(3) Å is isotypic to Schlippe's salt, Na3SbS4 · 9 H2O. The full X-ray structure analyses from four-circle diffractometer data show the selenium atoms of the AsO3Se3− and AsSe43− anions to be H-acceptors in six Se …︁ H O hydrogen bridges with d(Se …︁ O) = 3.357–3.693 Å and d(Se …︁ H) = 2.47–2.89 Å. The As Se bond in AsO3Se3− (2.283 Å) is shorter than in AsSe43− (2.319 Å).  相似文献   

5.
Na5[CuO2](OH)2 has been obtained as orange single crystals from mixtures of NaOH, Na2O and Cu2O in sealed Ag containers. The crystal structure has been refined from X‐ray diffraction data (IPDS data, Pnma, Z = 4, a = 607.4(1) pm, b = 891.2(1) pm, c = 1201.0(2) pm, R1 = 0.03). The characteristic unit is the bent [CuO2]3– complex (∠(O–Cu–O) = 170°). The reactivity of Na5[CuO2](OH)2 has been studied by DSC and in situ X‐ray diffraction techniques. IR spectroscopy has been used for further characterization. The Madelung Part of the Lattice Energy (MAPLE) has been calculated as well.  相似文献   

6.
Single Crystals of La[AsO4] with Monazite‐ and Sm[AsO4] with Xenotime‐Type Structure Brick‐shaped, transparent single crystals of colourless monazite‐type La[AsO4] (monoclinic, P21/n, a = 676.15(4), b = 721.03(4), c = 700.56(4) pm, β =104.507(4)°, Z = 4) and pale yellow xenotime‐type Sm[AsO4] (tetragonal, I41/amd, a = 718.57(4), c = 639.06(4) pm, Z = 4) emerge as by‐products from alkali and rare‐earth metal chloride fluxes whenever the synthesis of lanthanide(III) oxoarsenate(III) derivatives from admixtures of the corresponding sesquioxides in sealed, evacuated silica ampoules is accompanied by air intrusion and subsequent oxidation. Nine oxygen atoms from seven discrete [AsO4]3? tetrahedra recruit the rather irregular coordination sphere of La3+ (d(La3+?O2?) = 248 – 266 pm plus 291 pm) and even a tenth ligand could be considered at a distance of 332 pm. The trigonal dodecahedral figure of coordination consisting of eight oxygen atoms at distances of 236 and 248 pm (4× each) about Sm3+ is provided by only six isolated tetrahedral [AsO4]3? units. Alternating trans‐edge condensation of the latter with the [LaO9+1] polyhedra of monazite‐type La[AsO4] and the [SmO8] polyhedra of xenotime‐type Sm[AsO4] constitutes the main structural chain features along [100] or [001], respectively. The bond distances and angles of the complex [AsO4]3? anions range within common intervals (d(As5+?O2?) = 167 – 169 pm, ?(O–As–O) = 100 – 116°) for both lanthanide(III) oxoarsenates(V) presented here.  相似文献   

7.
The title compound, tetrasodium cobalt aluminium hexaarsenate, Na4Co7−xAl2/3x(AsO4)6 (x = 1.37), is isostructural with K4Ni7(AsO4)6; however, in its crystal structure, some of the Co2+ ions are substituted by Al3+ in a fully occupied octahedral site (site symmetry 2/m) and a partially occupied tetrahedral site (site symmetry 2). A third octahedral site is fully occupied by Co2+ ions only. One of the two independent tetrahedral As atoms and two of its attached O atoms reside on a mirror plane, as do two of the three independent Na+ cations, all of which are present at half‐occupancy. The proposed structural model based on a careful investigation of the crystal data is supported by charge‐distribution (CHARDI) analysis and bond‐valence‐sum (BVS) calculations. The correlation between the X‐ray refinement and the validation results is discussed.  相似文献   

8.
Abstract

Sodium copper (II) arsenate Na7Cu4(AsO4)5 has been grown by conventional high-temperature, solid-state methods in molten-salt media. It was characterized by single crystal X-ray diffraction (XRD), thermal analysis (DTA–TGA), scanning electron microscopy (SEM), semiquantitative energy dispersive spectroscopy analysis (EDS), and vibrational spectroscopy. Na7Cu4(AsO4)5 exhibits a three-dimensional framework built up of CuO5, CuO4, and AsO4 polyhedra, with intersecting channels in which the Na+ cations are located. The three-dimensional cohesion of the framework results from Cu–O–As bridges. CuO5 and CuO4 polyhedra are elongated due to the Jahn–Teller effect, whereas AsO4 tetrahedra are almost regular. This new structural model is validated by the charge distribution (CD) analysis. The infrared and Raman spectra confirmed the presence of AsO4 tetrahedra.

[Supplementary materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfer, and Silicon and the Related Elements for the following free supplemental files: Additional tables and figures.]  相似文献   

9.
The title compounds have been prepared in water by reaction of SbF3 with dihydrogen phosphates or arsenates and characterized by single crystal X-ray work, IR, Raman, and Mössbauer spectroscopy. They have identical layer structures. Layers of composition [(SbF)XO4] (X = P, As) were formed by sharing four corners between XO4 tetrahedra and SbFO4 pseudooctahedra. The lengths of the terminal Sb---F bond (with the lone pair in a trans-position) and the Sb---O bonds are 192 and 219 pm, respectively. The stacking of the layers and the interlayer distance depend on the cations and the number of intercalated water molecules. In Na(SbF)AsO4 the Na+ ion is coordinated by only two oxygen atoms within 300 pm. Crystal data: Na(SbF)PO4 · 5H2O, monoclinic, P21/m, A = 656.2(5), B = 654.1(5), C = 867.9(3) pm, β = 92.43(1)°, 889 reflections, 81 parameters, R = 0.044, Rw = 0.046. NH4(SbF)PO4 · H2O, tetragonal, I4/m, A = 656.6(3), C = 1439.8(5) pm, 680 reflections, 31 parameters, R = 0.023, Rw = 0.021. Na(SbF)AsO4, tetragonal, P4/ncc, A = 671.8(1), C = 1756.4(4) pm, 1056 reflections, 28 parameters, R = 0.052, Rw = 0.065. NH4(SbF)AsO4 · 3H2O, tetragonal, P4/ncc, A = 683.8(2), C = 1873.0(7) pm, 1194 reflections, 30 parameters, R = 0.042, Rw = 0.050.  相似文献   

10.
Na5Br(OH)4: Synthesis and Structure of a Compound in the System NaOH/NaBr The pseudobinary system NaOH/NaBr is investigated by X-ray methods. The structure of the compound Na5Br(OH)4 was solved by single crystal data: Na5Br(OH)4: Pnma, Z = 8, a = 11.846(2) Å, b = 18.782(4) Å, c = 6.431(1) Å, Z(Fo) = 1 202 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 100, R/Rw = 0.030/0.035 The compound crystallizes in a new type of structure. Pairs of octahedra around O by 5 Na and 1 H to [Na5(OH)]2 are orientated in such a way to one another that two ions OH? form a parallelogram hinting to unusual bent hydrogen bridge bonding.  相似文献   

11.
Two modifications of (TeO)(HAsO4) were obtained by reacting tellurium dioxide with arsenic acid under boiling conditions (modification I, acid concentration 80 wt‐%) or under hydrothermal conditions (modification II, acid concentration 50 wt‐%). The crystal structures of the two modifications were determined from single‐crystal X‐ray data [modification I: P21/c, Z = 4, a = 7.4076(10), b = 5.9596(7), c = 9.5523(11) Å, β = 102.589(8)°, 2893 structure factors, 68 parameters, R[F2 > 2σ(F2)] = 0.0247, wR2(F2 all) = 0.0530; modification II: P21/c, Z = 4, a = 6.2962(4), b = 4.7041(3), c = 13.9446(8) Å, β = 94.528(3)°, 2549 structure factors, 69 parameters, R[F2 > 2σ(F2)] = 0.0207, wR2(F2 all) = 0.0462)]. Dehydration of (TeO)(HAsO4)‐II at temperatures above 260 °C results in the formation of polycrystalline (Te3O3)(AsO4)2. Single crystals of the anhydrous product were grown either by heating stoichiometric amounts of the binary oxides TeO2 and As2O5 in closed silica glass ampoules or with higher concentrated arsenic acid (80 wt‐%) under hydrothermal conditions at 220 °C. The common features in the crystal structures of (Te3O3)(AsO4)2 [P$\bar{1}$ , Z = 4, a = 6.5548(4), b = 7.6281(6), c = 15.0464(15) Å, α = 140.212(6), β = 102.418(9)°, γ = 77.346(5)°, 5718 structure factors, 146 parameters, R[F2 > 2σ(F2)] = 0.0351, wR2(F2 all) = 0. 1093] and in that of the two modifications of acidic (TeO)(HAsO4) are [TeO5] square‐pyramids and [AsO4] tetrahedra. In anhydrous (Te3O3)(AsO4)2 and in (TeO)(HAsO4)‐II, a layered arrangement of the building units is found, whereas in the (TeO)(HAsO4)‐I structure strands are formed. Different hydrogen bonding interactions are present in the two modifications of (TeO)(HAsO4).  相似文献   

12.
On Oxotitanates of the Alkaline Metals: On Na4Ti5O12 Colourless single crystals of the new titanate Na4Ti5O12 (starting from mixtures Na2O/TiO2, 1000°C, 6 d, Au-crucible, open system) crystallize in the monoclinic system, space group C2/m, a = 26.544(9), b = 2.952(1), c = 6.322(3) Å, β = 95.79(3)°, Z = 2, d = 3.45 and dpyk = 3.38 g · cm?3 (four-cycle-diffractometer data, PW 1100, 2?-scan, MoKα). R = 5.09% and Rw = 4.87% for 1178 independent I0(hkl) with 3° ≤ 2? ≤ 34°. Corrugated layers of Ti5O12, held together by Na+, are stacked along [001]. Details about partially occupied positions of Na+, Effective Coordination Numbers (ECoN), the Madelung part of lattice energy (MAPLE), and the structural differences to Na2Ti3O7 are discussed.  相似文献   

13.
Na9[FeO3][FeO4]a Mixed Valent Oxoferrat(II, III) with Isolated [FeO3]4— — and [FeO4]5— Anions Na9[FeO3][FeO4] has been formed and obtained from a redox reaction between CdO and iron metal (reaction container) and Na2O in the presence of NaOH at 450 °C as orange‐red transparent single crystals. The crystal structure determination (IPDS data: Pca21, a = 956.2(2) pm, b = 999.1(2) pm, c = 1032.3(2) pm, Z = 4, Rall = 0.0455) reveals the presence of isolated complex anions, [FeO3]4— and [FeO4]5—.  相似文献   

14.
BaClSCN and Na4Mg(SCN)6: Two New Thiocyanates of the Alkaline Earth Metals The reaction of BaCl2 and NaSCN yielded single crystals of BaClSCN (P 21/m, Z = 2, a = 588.6(1) pm, b = 465.8(1) pm, c = 864.4(2) pm, β = 100.20(3)°, Rall = 0.0214). According to X‐ray single crystal investigations, the structure consists of anionic SCN and Cl layers, respectively, alternating in [001] direction. The SCN‐ions are connected via the N and the S atoms to the cations. Na4Mg(SCN)6 (P 3 1c, Z = 2, a = 863.8(1) pm, c = 1399.3(2) pm, Rall = 0.0870), which was obtained from a melt of NaSCN and MgCl2, consists of anionic layers with the cations between the sheets. The holes are filled altenatingly by Na+ or Na+ and Mg2+. Regarding only the C‐atoms of the SCN group, the structure can be described as a hexagonal closest packing whith the cations occupying 5/6 of the octahedral voids.  相似文献   

15.
The First Oxocobaltate(II) with Dinuclear Anion: Rb2Na4[Co2O5] and K2Na4[Co2O5] By heating of well ground mixtures of the binary oxides [A2O, Na2O, ?CoO”?, A:Na:Co = 1.00:2.00:1, (A = K, Rb); Ag-tube, 600°C, 14 d] we obtained Rb2Na4[Co2O5] and K2Na4[Co2O5] rough, transparent, red single crystals. We find a new type of structure with the anion [O2CoOCoO2]6?. Space group P42/mnm; a = 634.4 pm, c = 1030.3 pm, Z = 2 (A = K) a = 647.6 pm, c = 1021.1 pm, Z = 2 (A = Rb); four-circle diffractometer data; MoKα -radiation; 360 from 364 I0(hkl), R = 4.34%, Rw = 3.54% (A = K); 361 from 366 I0(hkl), R = 6.54%, Rw = 2.70% (A = Rb). The anion is planar, the CN of Co is 3. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, are calculated and discussed.  相似文献   

16.
The reaction of 4‐amino‐1,2,4‐Δ2‐triazoline‐5‐thione (ATT, 1 ) with AgNO3 in methanol led to the complex [Ag(ATT)2]NO3 ( 2 ). 2 was characterized by elemental analyses, 1H NMR, IR, and Raman spectroscopy as well as single‐crystal X‐ray diffraction. The molecular structure of 1 was also determined by single crystal X‐ray analysis. Crystal data for 1 at ?80 C: space group C2/c with a = 2107.4(2), b = 1425.1(1), c = 688.4(1) pm, β = 104.55(1)°, Z = 16, R1 = 0.0514, crystal data for 2 at ?80 °C: space group P21/c with a = 675.7(1), b = 1321.1(1), c = 1311.2(1) pm, β = 90.03(1)°, Z = 4, R1 = 0.0437.  相似文献   

17.
The single crystal of sodium manganese arsenate (1.72/3.28/12), Na1.72Mn3.28(AsO4)3, used for analysis was prepared by solid‐state reaction at 1073 K. The compound crystallizes in the monoclinic system in space group C2/c. The structure consists of a complex network of edge‐sharing MnO6 octahedral chains, linked together by AsO4 tetrahedra, forming two distinct channels, one containing Na+ cations and the other occupied statistically by Mn+ and Na+ cations.  相似文献   

18.
New Alkalioxoarsenates (V). On Rb2Li[AsO4] and Cs2Li[AsO4] By heating of well-grounded mixtures of the binary oxides (A2O, Li2O2, and As2O3; A : Li : As = 2 : 1 : 1; Ni-tube, 550°C, 21 d; A = Rb, Cs) colourless single crystals of Rb2Li[AsO4] and Cs2Li[AsO4] were obtained for the first time. These new orthoarsenates(V) crystalize orthorhombic (space group C mc21? C, No. 36) with Z = 4. As expected they are isotypic with the according orthovanadates(V) [2] A2Li[VO4], A = Rb, Cs. The lattice constants of Rb2Li[AsO4]: a = 582.1(4) pm, b = 1171.1(7) pm, c = 792.4(5) pm and Cs2Li[AsO4]: a = 596.4(2) pm, b = 1223.4(2) pm, c = 819.7(3) pm were taken from Guinier-Simon powder data. The structure was determined by four-circle-diffractometer data [Siemens AED II, MoKα , 6290 I0 (hkl), R = 3.5%, Rw = 3.2% to Rb2Li[AsO4]; 3518 I0 (hkl), R = 2.8%, Rw = 2.6% to Cs2Li[AsO4]; parameters see text]. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, MEFIR, as well as charge distribution CHARDI are calculated and discussed.  相似文献   

19.
About Perrhenates. 3 On the Structure of the Mesoperrhenate Na3[ReO5] By tempering powder samples (prepared from mixtures of binary oxides: Na2O2/ReO2 and Na2O/ReO3 respectively, Na : Re = 3 : 1, Ar and O2 atmosphere respectively, 400–450°C, corundum boat) in a closed Ag cylinder (500–550°C, 10 d) yellow single crystals of Na3ReO5, sensitive to moisture, were grown. The compound crystallizes trigonal, space group P31, P32 respectively, with a = 5.544(1), c = 13.580(7) Å, Z = 3, drö. = 4.62 g/cm3. The crystal structure [4-circle diffractometer data, 1091 I0(hkl), AgKα, R = 6.14, Rw = 6.08%] is characterized by “isolated” bipyramids ReO5. Na+ ions are occupying all the tetrahedral (Na2, Na3) and octahedral (Na1) holes of the pseudocubic face centred (c/a = 2.441) Re part of the lattice; resulting in a Na3Re kation framework corresponding to the Li3Bi type of structure. Effective Coordination Numbers (ECoN), the Madelung Part of Lattice energy (MAPLE) and the charge distribution (CHARDI) are computed and discussed.  相似文献   

20.
Synthesis and Crystal Structure of Sodium Tetraoxo Nitrido Tungstate(VI), Na5WO4N Colourless crystals of Na5WO4N are obtained besides Na4WO2N2 [1] by the reaction of WO3 with NaNH2 (15:1) at 350°C ≥ T ≥ 750°C in autoclaves to prevent early decomposition of sodium amide. X-ray single crystal investigations are characterized by the following data:
  • Na5WO4N: Cmc21 (No. 36), Z = 4
  • a = 9.873(2) Å, b = 5.769(1) Å, c = 10.648(2) Å
  • Z(F)≥ 3σ(F) = 2182, Z(Var.) = 55, R/Rw = 0.029/0.039
The structure contains the tetragonal pyramidal ion WO4N5? with nitrogen at the apex connected via Na+ ions irregularly coordinated by one nitrogen and four oxygen atoms of different anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号