首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 162 毫秒
1.
直接甲醇燃料电池阳极催化剂PtRu/C的制备和表征   总被引:24,自引:2,他引:22  
用三种方法制备了PtRu/C[Pt和Ru质量分数分别为20%和10%,记为PtRu/C(20%-10%)]甲醇阳极催化剂,通过X射线衍射(XRD)和透射电镜(TEM)考察了PtRu/C催化剂的粒子大小和晶格参数的变化,利用单电池实验考察了催化剂在直接甲醇燃料电池中的催化活性.结果表明,改变溶剂的组成提高了贵金属在活性炭表面的分散度,并改善了PtRu间的相互作用,用乙二醇/水/异丙醇混合溶剂制备的PtRu催化剂金属颗粒较小,PtRu间的相互作用较强,以该催化剂作甲醇阳极的直接甲醇燃料电池的性能较好.  相似文献   

2.
采用调变的多元醇法制备了高分散的Pt/C, PtRu/C和Ru/C电催化剂. XRD计算结果表明, PtRu/C电催化剂的平均粒径和合金度分别为2.2 nm和71%. 采用电化学方法和原位傅里叶变换红外反射光谱方法(in situ FTIRS)研究了甲醇在3种电催化剂上的吸附氧化过程, 发现PtRu/C对甲醇的催化活性明显高于Pt/C, Ru的加入一方面影响了甲醇在Pt上的解离吸附性能, 另一方面提供了Ru-OH物种, 从而抑制了低电位下电催化剂中毒. 红外光谱研究结果表明, 线性吸附态CO(COL)是主要毒化物种, 反应产物主要是CO2, 还有少量的甲酸甲酯. 根据实验结果讨论了甲醇在PtRu/C电催化剂上的氧化机理.  相似文献   

3.
甲醇电氧化催化剂Pt/CeO2-CNTs与PtRu/C的比较研究   总被引:1,自引:0,他引:1  
为认识合成催化剂Pt/CeO2-CNTs与商用催化剂PtRu/C(E-TEK)的催化性能和结构特点, 用CO溶出法和恒电位氧化法比较了这两种催化剂对CO的电氧化活性, 运用循环伏安法和恒电位氧化法比较了这两种催化剂对甲醇的电氧化活性. CO电氧化实验结果表明, PtRu/C上CO的电氧化活性明显优于Pt/CeO2-CNTs; 甲醇电氧化实验结果却表明, Pt/CeO2-CNTs与PtRu/C上甲醇电氧化表观活性相当. 为从结构特点上解释PtRu/C上CO电氧化和甲醇电氧化活性的不一致, 对PtRu/C进行了循环伏安扫描和CO溶出实验. 结果表明, PtRu/C的甲醇电氧化电流之所以没有预期高, 一是由于Pt比表面积不够大, 同时Pt-Ru之间协同作用有待提高. 本研究结果表明, 尽管Ru对Pt上CO电氧化有显著助催化作用, 但要充分发挥其对Pt上甲醇电氧化的助催化作用, 需同时提高Pt表面积和Pt-Ru接触界面. 该结论对设计甲醇电氧化催化剂具有普适意义.  相似文献   

4.
热处理对甲醇电氧化催化剂PtRu/C性能的影响   总被引:1,自引:1,他引:0  
采用非离子表面活性剂Triton X-100作为稳定剂制备了催化甲醇电氧化反应的PtRu/C催化剂, 研究了热处理温度对催化剂的组成、结构、形貌和活性的影响. 利用循环伏安法研究了PtRu/C催化剂催化甲醇电氧化的活性, 用热重和差热分析(TG-DTA)、X射线能量色散谱(EDX)、X射线衍射(XRD)、X射线光电子能谱(XPS)和透射电子显微镜(TEM)对PtRu/C催化剂进行了表征. 研究结果表明, 热处理对PtRu/C催化剂粒子的大小、分布和Pt的氧化态有重要的作用. 在350 ℃下热处理的催化剂显示了最好的催化甲醇电氧化的性能, 由Triton X-100作为稳定剂制备的PtRu/C催化剂最适宜的热处理温度是350 ℃.  相似文献   

5.
采用沉积-还原法制备了PtRu-NdOx/C催化剂,借助TEM、EDS和XRD等测试手段对其进行了微结构和组成的表征.结果表明,催化剂中Pt与Ru以合金形式存在,而Nd的氧化物则以无定形形态存在.催化剂粒子的平均粒径在2nm左右,晶胞参数为0.3896nm,Nd氧化物的加入对PtRu合金的晶体结构影响不明显.采用循环伏安法和计时电流法,比较了PtRu-NdOx/C催化剂和PtRu/C催化剂对甲醇氧化的电催化活性,结果表明,加入Nd的氧化物作为助催化剂能明显提高PtRu/C催化剂对甲醇氧化的电催化性能.  相似文献   

6.
NdOx作为助催化剂对PtRu/C电催化氧化甲醇活性的影响   总被引:5,自引:0,他引:5  
采用沉积-还原法制备了PtRu-NdOx/C催化剂, 借助TEM、EDS和XRD等测试手段对其进行了微结构和组成的表征. 结果表明, 催化剂中Pt与Ru以合金形式存在, 而Nd的氧化物则以无定形形态存在. 催化剂粒子的平均粒径在2 nm左右, 晶胞参数为0.3896 nm, Nd氧化物的加入对PtRu合金的晶体结构影响不明显. 采用循环伏安法和计时电流法, 比较了PtRu-NdOx/C催化剂和PtRu /C催化剂对甲醇氧化的电催化活性, 结果表明, 加入Nd的氧化物作为助催化剂能明显提高PtRu /C催化剂对甲醇氧化的电催化性能.  相似文献   

7.
稀土Eu掺杂PtRu/C催化剂及其对甲醇电氧化的性能   总被引:1,自引:0,他引:1  
采用化学还原和热处理方法对商业PtRu/C催化剂进行稀土Eu掺杂,制备了不同Eu含量的PtRuEux/C催化剂.透射电子显微镜(TEM)、X射线能量色散光谱(EDX)、X射线衍射(XRD)和X射线光电子能谱(XPS)等方法表征催化剂的结果表明,Eu的掺杂未改变PtRu/C催化剂的平均粒径(约为3nm),并且Eu以金属和氧化物两种形态修饰PtRu表面.循环伏安和计时电流法测试显示,PtRuEux/C催化剂较商业PtRu/C对甲醇氧化具有更高的活性,其中PtRuEu0.3/C的活性最高.运用原位傅里叶变换红外(FTIR)光谱从分子水平研究了该催化剂对甲醇电催化氧化的反应过程,检测到甲醇在催化剂上解离吸附的吸附态产物是线型吸附态CO(COL),Eu的掺杂使COL的氧化电位降低,明显提高了催化剂的活性和抗CO毒化的能力.  相似文献   

8.
制备方法对PtMo/C催化剂上CO电催化氧化性能的影响   总被引:3,自引:0,他引:3  
李莉  徐柏庆 《物理化学学报》2005,21(10):1132-1137
用化学还原法、胶体法和Adams法制备了PtMo/C电催化剂, 对其物理化学性质及其在CO电氧化反应中的催化性能进行了对比研究. TEM和XRD测试结果表明, 胶体法制备的催化剂颗粒在载体炭上均匀分布, 颗粒粒径约5 nm;由化学还原法制备的颗粒尺寸较大, 而Adams法制备的颗粒尺寸达数十纳米, 并有严重的团聚现象. CO消除伏安法测试结果表明, 三种制备方法中胶体法制备的PtMo/C催化剂具有最高的电化学表面积和电催化活性. 与常用的Pt/C催化剂相比, PtMo/C催化剂中Pt上弱吸附态CO的电氧化均得到了促进, 而强吸附态CO则不受影响. 这些结果表明PtMo颗粒的尺寸分布和在载体上的分散状况是影响PtMo/C催化剂电催化性能的主要因素. 胶体法制备的PtMo/C与常用的PtRu/C相比, 电化学表面积虽然较低, 但在低电势下CO的起始氧化电势只有0.15 V, 而且在0.15~0.50 V之间发生电氧化的CO达到其总量的1/3.  相似文献   

9.
采用两步浸渍-还原法制备了一种具有高Pt利用效率,高性能的Pt修饰的Ru/C催化剂(Ru@Pt/C).对于甲醇的阳极氧化反应,该催化剂的单位质量铂的催化活性分别为Pt/C、自制PtRu/C和商业JMPtRu/C催化剂的1.9、1.5和1.4倍;其电化学活性比表面积分别为Pt/C和自制PtRu/C的1.6和1.3倍.尤为重要的是该催化剂对甲醇氧化中间体具有很好的去除能力,其正向扫描的氧化峰的峰电流密度(If)与反向扫描氧化峰的峰电流密度(Ib)之比可高达2.4,为Pt/C催化剂的If/Ib的2.7倍,表明催化剂具有很好的抗甲醇氧化中间体毒化的能力.另外,Ru@Pt/C催化剂的稳定性也高于Pt/C、自制PtRu/C和商业JMPtRu/C催化剂的稳定性.采用X射线衍射(XRD)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征,Pt在Ru表面的包覆结构得到了印证.Ru@Pt/C的高铂利用效率、高性能和高抗毒能力使其有望成为一种理想的直接甲醇燃料电池电催化剂.  相似文献   

10.
高负载率纳米Pt-Ru/C催化剂的制备和表征   总被引:2,自引:0,他引:2  
宗晔  王宇  林昌健 《物理化学学报》2006,22(11):1305-1309
以Vulcan XC-72R碳黑为载体, 通过在含十二烷基硫酸钠(SDS)的乙二醇溶液中直接还原氯铂酸和三氯化钌, 制备了负载率为60%的纳米PtRu/C催化剂. 透射电镜(TEM)和X射线衍射(XRD)分析结果表明, SDS的加入可显著改善PtRu纳米颗粒在载体表面分散性, 平均粒径达到2.7 nm. 电化学循环伏安法(CV)测试的结果显示, 利用这种方法制备的纳米PtRu/C催化剂对于甲醇氧化具有较强的抗中毒能力和较高的电催化活性.  相似文献   

11.
三组Pt- Ru/C催化剂前驱体对其性能的影响   总被引:1,自引:0,他引:1  
分别以三组不同的Pt和Ru化合物为前驱体, 采用热还原法制备了Pt-Ru/C催化剂, 比较不同前驱体对催化剂性能的影响;通过XRD和TEM技术对催化剂的晶体结构及微观形貌进行了分析. 结果表明以H2PtCl6+RuCl3和自制(NH4)2PtCl6+Ru(OH)3为前驱体的催化剂Pt和Ru没有完全形成合金状态, 在Pt(111)和Pt(200)之间有Ru(101)存在;以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂未检测出Ru金属或其氧化物的衍射峰, Pt-Ru颗粒在载体上分散均匀, 粒径最小, 为3.7 nm. 利用玻碳电极测试了循环伏安、记时电流和阶跃电位曲线, 考核了上述催化剂对甲醇阳极催化氧化活性的影响;结果表明:以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂对甲醇的电催化氧化活性最高, 循环伏安曲线峰电流密度达11.5 mA•cm-2.  相似文献   

12.
PtRu/C anode electrocatalysts modified by Sn were prepared for ethanol oxidation reaction (EOR). Their phase structures, surface species, surface compositions, and EOR activities were characterized by XRD, XPS, temperature-programmed reduction (TPR), and CV, respectively. It has been found that in the PtRu/SnxC and PtSn/C alloy catalysts, some Sn alloyed with Pt to form Pt–Sn phase existed as the metallic state, however, the excess Sn existed as the amorphous SnO or crystalline SnO2. Surface analyses and electrochemical measurements suggest that the surface Ru and amorphous SnO instead of the crystalline SnO2 are important species for the promotion of EOR. As a result, compared with PtSn/C, the I06 was enhanced about 200% for the PtRu/C electrocatalyst with 10 wt% of Sn modification.  相似文献   

13.
PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy.  相似文献   

14.
采用多元醇法制备了n(Pt)/n(Sn)比为2:1,3:1,4:1的PtSn/C电催化剂.通过XRD,TEM、循环伏安和氢化学吸附技术对催化剂进行了表征.TEM和XRD结果表明,不同比例的PtSn/C金属粒子的平均粒径均小于4nm,且粒径分布较窄;该系列催化剂中Pt具有fcc结构;PtSn间的相互作用使Pt晶格参数增大.循环伏安和氢化学吸附实验结果表明,加入Sn可抑制Pt对氢的吸附,Pt3Sn/C对乙醇的氧化电流比Pt4Sn/C高约1倍.用不同n(Pt)/n(Sn)比的催化剂作为直接醇类燃料电池阳极电催化剂,在相同条件下,随着Sn含量的增加,单电池最大输出功率逐渐增大,当Sn含量继续增大时,单池性能反而下降.导致不同比例PtSn催化剂活性差别的原因可能是由于Sn与Pt间的合金化程度不同和催化剂粒子尺寸效应及Sn含量对电池阻抗等几方面因素所致.对40h寿命测试前后的阳极Pt3Sn/C催化剂的分析(EnergydispersiveX-rayanalysis,EDX)结果表明,PtSn含量在测试前后均有所降低,PtSn催化剂的寿命尚有待改善.  相似文献   

15.
The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.  相似文献   

16.
Binary Pt–Sn/C (1:1) and ternary Pt–Sn–Ru/C (1:1:0.3 and 1:1:1) catalysts were synthesized by reduction of precursors with formic acid, and their activity for ethanol oxidation was compared with that of commercial Pt/C and Pt–Ru/C catalysts. Linear sweep voltammetry measurements at 40 and 90 °C showed that for potentials higher than 0.3 V vs. RHE, the Pt–Sn–Ru/C (1:1:0.3) catalyst presents the highest activity for ethanol electro-oxidation, while the electrochemical activity of the Pt–Sn–Ru/C (1:1:1) catalyst was lower than that of both the binary Pt–Sn/C and Pt–Ru/C catalysts. Tests in a single direct ethanol fuel cell confirmed the superior performance of the Pt–Sn–Ru/C (1:1:0.3) electrocatalyst. The positive effect of the Ru presence in the Pt–Sn–Ru/C (1:1:0.3) catalyst was ascribed to the interactions between Sn and Ru oxides.  相似文献   

17.
阮明波  刘京  宋平  徐维林 《催化学报》2022,43(1):116-121
近几十年来,聚合物电解质膜燃料电池(PEMFC)因其在零排放汽车、固定式和便携式发电设备中的应用而得到迅速发展.燃料电池的阴极氧还原反应(ORR)和阳极氢氧化反应(HOR)常用的催化剂为Pt基催化剂,因此整个燃料电池系统的成本高昂.而ORR的反应速率比HOR慢得多,阴极上的Pt消耗量远高于阳极上.为了降低燃料电池Pt的用量,近年来,许多类型的非铂或低铂ORR电催化剂被报道作为传统Pt基催化剂的可能替代品,以降低成本促进燃料电池的大规模应用.为了评估新催化剂的ORR性能,一般来说,都是以最先进的商业Pt/C的ORR性能作为参考标准进行比较.最简单常用的方法是采用旋转盘电极测试技术,比较线性扫描曲线上极限扩散电流一半处的电位(半波电位E1/2):半波电位越高,说明其ORR性能越好.众所周知,Pt/C催化剂的本征活性主要与其微观结构和组成有关,而不是与测试方案有关,理想情况下,不同实验室对相同类型的商用Pt/C的测量结果应该是相同的.然而,不同实验室采用的测试方案不同,所得的商业Pt/C的“表观”ORR性能差异巨大.显然,在不考虑不同实验室之间测试方案的微小差异的情况下,作为参比的Pt/C电催化剂的这种明显的性能差异使得来自不同实验室的不同催化剂之间的ORR性能的比较变得无序和不可靠.为解决此问题,需要一种标准的简单测试方案作为商业Pt/C甚至其他类型电催化剂的测试参考,以便在不同的实验室中获得易于重复的“表观”结果.本文通过对全球不同实验室的514篇参考文献进行数据挖掘并进行综合分析发现,同类型Pt/C参比的“表观”活性差异可能主要归因于测试方案的差异,如铂负载(μg/cm2)、玻碳电极的尺寸和线性扫描速率等.基于这些主要影响因素,本文重点分析了商业Pt/C的表观活性(E1/2)与测试方案中各因素之间的相关性.经初步分析发现,大部分测试采用非欧姆补偿和负向扫描(从高电位向低电位扫描),在此前提下,本文深入分析了酸性和碱性电解质溶液中Pt载量、电极尺寸、扫描速率以及不同生产厂家对Pt/C的E1/2的影响.结果发现,在直径为4 mm、Pt负载量为20μg/cm2的玻碳工作电极上,以10 mV/s的扫描速率,在酸性和碱性电解质中都可以获得可靠的商业Pt/C最可重复的ORR催化性能(E1/2=0.84±0.03 V),且在高氯酸中的E1/2值比在硫酸中更高,并得到实验证实.本文结果可作为商业Pt/C的ORR半波电位的“黄金参考”,用于评估其他ORR催化剂在酸性和碱性电解液中的性能.这项工作为作为ORR性能参考标准的商业Pt/C的可靠测试提供了参考.  相似文献   

18.
Polymer electrolyte fuel cells constitute one of the most important efficiency energy converters for non-centralised uses. However, the use of fuels arising from reformate processes significantly lowers the current efficiency because of anodic catalytic poison coming from adsorbed carbon monoxide (COad). In this work, the influence of the addition of hydrogen peroxide in the flow current is studied, considering the adsorption and electrochemical oxidation of carbon monoxide on carbon-supported Pt (20% Pt/Vulcan) and Pt:Ru (1:1, 20% Pt:Ru/Vulcan) catalysts in 2 M sulphuric acid. The investigation was conducted applying cyclic voltammetry and on-line differential electrochemical mass spectrometry. A series of experiments has been performed to investigate the influence of the temperature as well as the time of contact and the concentration of hydrogen peroxide. Oxidation of COad to carbon dioxide occurs at lower potentials in the presence of hydrogen peroxide. Moreover, it is possible to remove ca. 70% of COad on Pt/C electrodes. On the other hand, for PtRu/C electrodes, similar charge values to those of Pt/C electrodes were obtained for the CO stripping, but the process occurs at more negative potentials. In this case, the effect of partial desorption for COad by interaction with hydrogen peroxide is added to the bifunctional mechanism usually considered for this alloy. This paper is dedicated to Prof. Francisco Nart, in memoriam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号