首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
1,4-二氧六环和氨分子氢键团簇的从头算   总被引:2,自引:0,他引:2  
在不同基组水平上,对1,4-二氧六环和氨分子氢键团簇体系进行了从头算分子转道法研究,优化得到中性团簇,离子团簇和碎片离子(质子化团簇离子和非质子化团簇离子)平衡几何构型,研究结果表明:中性团簇最稳定构型为R-HN2-HNN2(R:1,4-二氧六环),离子团簇由于发生质子转移,其构型与中 团簇有较大的淡同,两类碎片离子R(NH3)+和R(NH3)H^+与中性团簇R(NH3)的结构也有所不同  相似文献   

2.
用飞秒激光电离飞行时间质谱研究了吡啶分子团簇在400 nm波长下的多光子光电离,实验观测到一系列的质子化和非质子化团簇离子.结果表明,质子转移也能发生在弱氢键结合的分子间.通过分析离子峰宽和离子信号强度随气源压力的变化,得到质子化团簇离子来源于大团簇离子的碎裂,而非质子化团簇离子是中性团簇直接电离的结果.从头计算结果表明,吡啶团簇是通过弱氢键C-H…N 结合在一起的,并且团簇离子离解倾向于生成质子化产物.  相似文献   

3.
四吡啶基卟啉质子化结构变化的理论研究   总被引:4,自引:0,他引:4  
马思渝  李宗和 《化学学报》2000,58(5):588-593
为考察m-吡啶基对质子化卟啉结构的影响,用半经验的AM1MO方法,并进行合理的对称性限制,计算了一类重要的卟啉衍生物---四吡啶基卟啉(TPyPH~2)及其质子化二酸(TP~yPH~4^2^+)的构型。通过结构分析,电荷布居分析和前沿轨道分析,讨论了质子化过程中的构型变化以及这种变化对分子堆积可能带来的影响。  相似文献   

4.
N_2H_4-CH_3OH氢键团簇体系的从头计算   总被引:2,自引:0,他引:2  
用从头计算法研究了 (N2 H4-CH3OH)氢键团簇体系。分别在HF/6 31G 和HF/6 31G 水平上对它们的中性和离子团簇进行几何全优化 ,得到了 3种中性混合团簇稳定构型和离子混合团簇稳定构型 ,并对其能量和稳定性进行了比较。讨论了 3种不同构型离子团簇可能的解离通道。给出了质子化混合团簇的稳定构型 ,并对其可能的解离通道进行了讨论。文中最后计算出N2 H4,CH3OH ,(N2 H4-CH3OH)团簇的质子亲和能 (PA) ,分别为 :2 0 6.7kcal/mol,1 78.3kcal/mol,2 2 7.5kcal/mol,其中质子亲和能PAcalc[N2 H4]与实验值PAexp[N2 H4]=2 0 4 .8kcal/mol符合得很好。  相似文献   

5.
用直射式和反射式飞行时间质谱研究了氨分子团簇体系在 355 nm激光下的多光子电离,得到一系列的质子化团簇离子 (NH3)nH+,同时还观察到超价氨团簇离子 (NH3)n H2+。在反射式飞行时间质谱研究中观测到质子化氨团簇离子在自由飞行过程中的解离现象,表明在该实验条件下生成的质子化氨团簇离子是一些亚稳态团簇离子。对子离子产率的分析,得到质子化团簇离子解离速率常数,从而可以估计亚稳态团簇离子的寿命。团簇尺寸从 n=3增大到 20,其寿命从 21 ms减小到 120 μs,大约小了两个数量级。解离速率在 n=5到 6有一个阶跃式上升,这是由于 5个氨组成的质子化团簇离子(NH3)4NH4+ 的结构相对比较稳定。  相似文献   

6.
用半经验的AMI MO方法,进行合理的对称性限制,计算了一类重要的卟啉衍生物──四苯基卟啉(TPPH_2)及其质子化二酸(TPPH_4~2 )的构型,并通过结构分析,电荷布居分析和前线轨道分析,讨论了质子化过程中的构型变化以及这种变化对分子堆积可能带来的影响。  相似文献   

7.
袁冰  刘天  于世涛 《燃料化学学报》2014,42(10):1218-1224
将一系列不同结构的离子液体与雷尼镍复合,作为甘油氢解制备丙二醇反应的催化剂。考察了离子液体结构对催化性能的影响,优选出具有适宜酸强度的固态磷钨酸质子化咪唑([HMIM]3PW12O40),采用FT-IR、1H-NMR及TG对其进行了表征。[HMIM]3PW12O40/雷尼镍复合催化剂在用量[HMIM]3PW12O400.2 mmol、雷尼镍0.3 g的条件下,催化20 g 40%甘油水溶液在6 MPa氢压(氢醇比为2.37∶1)下,230℃反应11 h,可得到甘油转化率83.3%,氢解产物1,2-丙二醇选择性57.3%的结果,催化剂具有良好的稳定性。  相似文献   

8.
利用密度泛函理论(DFT), 在B3LYP/cc-pVDZ水平上, 对三过氧化三丙酮(Triacetone triperoxide, TATP)及其质子化离子[TATP+H]+进行了构型优化和质子亲和势(Proton Affinity, PA)计算, 研究结果表明, PA(TATP)=866.73 kJ/mol大于PA(H2O)=691.0 kJ/mol, TATP与H3O+可发生质子转移反应. 在自行研制的质子转移反应质谱(Proton transfer reaction mass spectrometry, PTR-MS) 装置上, 研究了TATP与H3O+反应生成的特征离子. 当漂移管中E/N=1.4×10-15 V·cm2时, 在荷质比m/z=91, 75, 74, 59, 43等处观察到了产物离子. 降低E/N至0.5×10-15 V·cm2后, 在m/z=223处观察到了质子化产物离子([TATP+H]+), 验证了计算结果; 结合[TATP+H]+的构型, 分析了TATP质子转移反应产物离子可能的归属及其形成过程. 结合PTR-MS漂移管内E/N的改变引起m/z=223, 91, 43等离子的变化特征, 可实现TATP的准确识别和快速定量检测, 检测下限达到5.0×10-10 mol/L(±50%).  相似文献   

9.
最近,美国纽约州立大学的 M.T.Coolbaugh 等人在纯二甲醚(DME)分子束中检测到了一种新的簇离子——一种被两个或更多个 DME 分子溶剂化了的质子化甲醇离子。研究者们认为,这种质子化甲醇离子是通过一系列反应形成的。反应从 CH_3OCH_2~+(DME  相似文献   

10.
用密度泛函方法B3LYP/aug-cc-pVTZ分析了腺嘌呤和质子化腺嘌呤的低能稳定异构体的结构和振动光谱. 结果发现, 对于中性腺嘌呤分子, 腺嘌呤的异构体N9H比N7H的能量低32.76 kJ·mol-1(在极化连续模型下为6.28 kJ·mol-1). 基于标度量子力场方法所得到的势能分布, 对异构体N9H的部分振动基频重新进行了归属. 在极化连续模型下, 质子化腺嘌呤分子有5种低能稳定构型, 其中N1位质子化的9-位氢腺嘌呤最为稳定. 基于振动模式分析, 对这种最稳定构型的振动基频进行了归属, 并对腺嘌呤在pH=1的高氯酸溶液中的实验拉曼光谱进行了指认.  相似文献   

11.
1 INTRODUCTION In order to achieve predictable structures resulted from flexible building units, we have synthesized The rational design and construction of inorganic- two complexes from the mixed ligands of 3-(4-chlo- organic hybrid materials by flexible ligands have re- rophenyl) glutaric acid (cpg) (Scheme 1) and 1,3-di- ceived considerable attention due to their novel struc- (4-bipy) propane (bpp), and obtain 1D bilayer ladder tures as well as their special functional properties[1~6].…  相似文献   

12.
Gaseous [C7H7O]+ ions have been formed by protonation of benzaldehyde or tropone (2,4,6-cycloheptatrienone) in the cell of an FT-ICR mass spectrometer using C2H5(+) as a Br?nsted acid. The so-formed species have been assayed by infrared multiphoton dissociation (IRMPD) using the free electron laser (FEL) at the CLIO (Centre Laser Infrarouge Orsay) facility. The IRMPD features are quite distinct for ions from the two different precursors, pointing to two different isomers. A number of potential structures for [C7H7O]+ ions have been optimized at the B3LYP/6-31+G(d,p) level of theory, and their relative energies and IR spectra are reported. On this basis, the IRMPD spectra of [C7H7O]+ ions are found to display features characteristic of O-protonated species, with no evidence of any further skeletal rearrangements. The so-formed ions are thus hydroxy-substituted benzylium and tropylium ions, respectively, representative members of the benzylium/tropylium ion family. The IRMPD assay using the FEL laser light has allowed their unambiguous discrimination where other mass spectrometric techniques have yielded a less conclusive answer.  相似文献   

13.
A selected ion flow tube (SIFT) experimental investigation has been carried out of the reactions of H3O+, NO+ and O2+ with NO, NO2, N2O and HNO2, in order to obtain the essential kinetic data for the analyses of these compounds in air using selected ion flow tube mass spectrometry (SIFT-MS). These investigations show that NO+ ions do not react at a significant rate with any of these NOx compounds and that H3O+ ions react only with HNO2 (product ions H2NO2+ (75%) and NO+ (25%)). O2+ ions react with NO (product ion NO+), NO2 (product ion NO2+) and HNO2 (product ions NO+ (75%), NO2+ (25%)), but not with N2O. We conclude that both NO and NO2 can be accurately quantified in air using only O2+ precursor ions and SIFT-MS when HNO2 is not present. However, when HNO2 is present it invariably co-exists with both NO and NO2 and then both H3O+ and O2+ precursor ions are needed to determine the partial pressures of NO, NO2 and HNO2 in the air mixture. We also conclude that currently N2O cannot be analysed in air using SIFT-MS.  相似文献   

14.
A new method has been developed for the determination of the isotope abundance ratios of deuterium, D, and oxygen-18, 18O, in water vapor (and water) using selected ion flow tube mass spectrometry (SIFT-MS). H3O+ ions are injected into the helium carrier gas where they associate with the H2O and HDO molecules in a sample of water introduced into the carrier gas. The D and 18O contents of the product cluster ions H8DO4+ and H9(18)OO3+ at m/e = 74 and 75, respectively, are determined by reference to the majority cluster ion H9O4+ at m/e = 73. Allowance is made for the contribution of the H8(17)OO3+ ions to the m/z = 74 ions. Absolute isotopic ratios are measured within seconds without the need for precalibration of the SIFT-MS instrument, currently to an accuracy of better than 2%.  相似文献   

15.
We have carried out a study of the reactions of H(3)O(+), NO(+) and O(2) (+), the commonly used precursor ions for selected ion flow tube mass spectrometry (SIFT-MS), with three anaesthetic gases, halothane, isoflurane and sevoflurane. The motivation for this study was to provide the necessary kinetic data that would allow the quantification of these anaesthetic gases in operating theatre air and in the breath of theatre staff and post-operative patients. A clear negative result from these experiments is that NO(+), although undergoing the simplest chemistry, is unsuitable for this SIFT-MS application. However, although the ion chemistry of H(3)O(+) and O(2) (+) with these compounds is very complex, there being several product ions in each reaction, many of which react rapidly with water molecules, monitor ions have been identified for all three anaesthetic gases when using H(3)O(+) and O(2) (+) as precursor ions. The detailed ion chemistry is discussed and the specific monitor ions are indicated. Hence, the feasibility of on-line breath monitoring is demonstrated by simple examples. These studies have opened the way to measurements in the clinical environment.  相似文献   

16.
Unimolecular metastable decomposition of diethoxymethane (CH(2)(OCH(2)CH(3))(2), 1) upon electron impact has been investigated by means of mass-analyzed ion kinetic energy (MIKE) spectrometry and theD-labeling technique in conjunction with thermochemistry. The m/z 103 ion ([M - H](+) : CH(OCH(2)CH(3)) = O(+)CH(2)CH(3)) decomposes into the m/z 47 ion (protonated formic acid, CH(OH) = O(+)H) by consecutive losses of two C(2)H(4) molecules via an m/z 75 ion. The resulting product ion at m/z 47 further decomposes into the m/z 29 and 19 ions by losses of H(2)O and CO, respectively, via an 1,3-hydroxyl hydrogen transfer, accompanied by small kinetic energy release (KER) values of 1.3 and 18.8 meV, respectively. When these two elimination reactions are suppressed by a large isotope effect, however, another 1,1-H(2)O elimination with a large KER value (518 meV) is revealed. The m/z 89 ion ([M - CH(3)](+) : CH(2)(OCH(2)CH(3))O(+) = CH(2)) decomposes into the m/z 59 ion (CH(3)CH(2)O(+) = CH(2)) by losing CH(2)O in the metastable time window. The source-generated m/z 59 ion ([M - OCH(2)CH(3)](+) : CH(2) = O(+)CH(2)CH(3)) decomposes into the m/z 41 (CH(2) = CH(+)CH(2)) and m/z 31 (CH(2) = O(+)H) ions by losses of H(2)O and C(2)H(4), respectively, with considerable hydrogen scrambling prior to decomposition. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

17.
The nature of H(H2O)n(+) cations for n = 3-8 with weakly basic carborane counterions has been studied by IR spectroscopy in benzene and dichloroethane solution. Contrary to general expectation, neither Eigen-type H3O x 3 H2O(+) nor Zundel-type H5O2(+) x 4 H2O ions are present. Rather, the core species is the H7O3(+) ion.  相似文献   

18.
Three new isomorphic coordination polymers of Co(2+), Zn(2+) ions with flexible multicarboxylic acid ligand of the cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid (H(4)L), [Co(4)L(2)(H(2)O)(8)]·3H(2)O (1), [Zn(4)L(2)(H(2)O)(8)]·3H(2)O (2) and [Co(0.8)Zn(3.2)L(2)(H(2)O)(8)]·3H(2)O (3), have been synthesized under hydrothermal conditions and by means of controlling the pH of the reaction mixtures (with an initial pH of 6.0 for 1, 4.0 for 2, and 5.0 for 3, respectively). In the crystal of 1, two crystallographically different Co(2+) ions (Co1 and Co2) form a negatively-charged coordination polymeric chain, which contains a centrosymmetric, linear, trinuclear Co(2+) cluster (Co(3)L(2)) subunit; another crystallographically independent Co(2+) ion (Co3) coordinated to six water molecules acts as a counter ions to link the neighboring coordination polymeric chains via intermolecular H-bond interactions. The Co(2+) ions in 1 were completely and partially replaced by Zn(2+) ions to give 2 and 3, respectively. Complex 3 shows a novel molecular alloy nature, due to the random distributions of the Co(2+) and Zn(2+) ions. Three isomorphic complexes exhibit distinct thermal decomposition mechanisms. The deprotonated cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid ligands decompose at 420-750 °C to give the residue CoO in 1, ZnO + C in 2 and CoO + ZnO in 3. Complex 1 shows a complicated magnetic behavior with co-existence of antiferromagnetic exchange interactions between neighboring Co(2+) ions as well as strong spin-orbital coupling interactions for each Co(2+) ion; complex 3 exhibits a magnetically isolated high-spin Co(2+) ion behavior with strong spin-orbital coupling interactions.  相似文献   

19.
A novel ion source based on direct current (d.c.) discharge has been developed for proton transfer reaction ionization operated at relatively high ion drift tube pressure. The shape and geometry of the ion source are designed to maximize overall ion intensity and to minimize interference from sample air. The initial performance of the technique, including speciation and intensity of reagent ions, their stability, and the impact of artifact signals, is evaluated by means of a proton transfer reaction time-of-flight mass spectrometer (PTR-TOFMS) newly built in our laboratory. Intensities of the hydronium (H(3)O(+)) ions are typically (5-7) x 10(5) counts for a 1-min integration time with a duty cycle of approximately 1%. The fluctuations of the ion signals over a period of hours are within 4%. Although the formation of artifact ions from sample air (NO(+) and O(2) (+)), which react with volatile organic compounds (VOCs) and subsequently cause fragmentation, is observed as background signals in addition to hydronium and mono- and di-hydrate H(3)O(+) ions, intensities of both NO(+) and O(2) (+) ions are only approximately 0.5% of those of H(3)O(+) ions. Using our PTR-TOFMS system at a drift tube pressure of approximately 5 Torr, the detection sensitivities are significantly improved and the detection limits for propene, acetaldehyde, acetone, isoprene, benzene, toluene, and p-xylene are estimated to be at the sub-ppbv level for 1-min integration.  相似文献   

20.
This report covers initial studies in the coaggregation of nickel (Ni2+) and lanthanide (Ln3+) metal ions to form complexes with interesting structural and magnetic properties. The tripodal amine phenol ligand H3tam (1,1,1-tris(((2-hydroxybenzyl)amino)methyl)ethane) is shown to be particularly accommodating with respect to the geometric constraints of both transition and lanthanide metal ions, forming isolable complexes with both of these ion types. In the solid-state structure of [Ni(H2tam)(CH3CN)]PF6.2.5CH3CN.0.5CH3OH (1), the Ni(II) center has a distorted octahedral geometry, with an N3O2 donor set from the [H2tam]- ligand and a coordinated solvent (acetonitrile) occupying the sixth site. The reaction of stoichiometric amounts of H3tam with the Ni(II) ion in the presence of lanthanide(III) ions provides [LnNi2(tam)2]+ cationic complexes which contain coaggregated metal ions. These complexes are isolable and have been characterized by a variety of analytical techniques, with mass spectrometry proving to be particularly diagnostic. The solid-state structures of [LaNi2(tam)2(CH3OH)1/2(CH3CH2OH)1/2(H2O)]ClO4.0.5CH3OH.0.5CH3CH2OH.4H2O (2), [DyNi2(tam)2(CH3OH)(H2O)]ClO4.CH3OH. H2O(6), and [YbNi2(tam)2(H2O)]ClO4.2.58H2O(9) have been determined. Each complex contains two octahedral Ni(II) ions, each of which is encapsulated by the ligand tam3- in an N3O3 coordination sphere; each [Ni(tam)]-unit caps the lanthanide(III) ion via bridging phenoxy oxygen donor atoms. In 2, La3+ is eight-coordinated, while in 6, Dy(III) is seven- (to "weakly eight-") coordinated, and Yb(III) in 9 has a six-coordination environment. The complexes are symmetrically different, 2 possessing C2 symmetry and 6 and 9 having C1 symmetry. Magnetic studies of 2, 6, and 9 indicate that antiferromagnetic exchange coupling between the Ni(II) and Ln(III) ions increases with decreasing ionic radius of Ln(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号