首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
采用MgCl2负载TiCl4及1,3-二氯-2-丙醇给电子体(XROH),与三乙基铝助催化剂组成的催化剂体系,合成了1-己烯共聚率高且宽分子量分布的乙烯/1-己烯共聚物。讨论了催化体系的组成、配比和聚合条件对乙烯/1-己烯共聚合行为,共聚物结构、分子量及分子量分布的影响。结果表明,n(Ti):n(Mg)=10:1,n(XROH):n(MgCl2)=2.6:1,n(Al):n(Ti)=100:1,乙烯压力0.45MPa,聚合温度80℃,聚合时间2h,共聚单体(1-hexene)浓度0.25mol/L时,催化效率达23.2kg/gcat。采用13CNMR、X-ray、SEM、WAXD、DSC、GPC等测试技术对催化剂、共聚物的结构进行了表征。结果表明,在Zieglar-Natta(Z-N)催化体系中,给电子体多卤代醇与TiCl4结合,载体MgCl2的晶体结构发生了变化。结晶度降低,有利于催化剂负载量的提高(ω(Ti)=4.8%)和催化效率增大。催化体系产生了多种活性中心,使聚烯烃分子量分布变宽(15~20)。多卤代醇还可增强1-己烯与乙烯的共聚能力,在共聚物中1-己烯的摩尔分数达5.1%。  相似文献   

2.
本研究以硅胶为载体,以Cp2ZrCl2为主催化剂,分别以甲基铝氧烷(MAO)、三五氟苯基硼(B(C6F5)3)、N,N-二甲基苯铵四(五氟苯基)硼酸盐([HNMe2Ph][B(C6F5)4])、三苯碳鎓四(五氟苯基)硼酸盐([Ph3C][B(C6F5)4])、三五氟苯基硼/三甲基铝(B(C6F5)3/TMA)为活化剂制备了负载茂金属催化剂,考察了它们对乙烯均聚、乙烯/α-烯烃共聚合的影响。实验结果表明,当硼化物用量为5.1?0-4mol/g SiO2,B/Zr在14.10~19.04之间时,负载茂金属催化剂催化烯烃聚合活性达107g/(molZr?h),是相同条件下以MAO为活化剂时活性的511~1090倍,同样达到107g/(molZr?h)的催化活性,硼化物用量仅仅为MAO用量1/16;和B(C6F5)3相比,以[HNMe2Ph][B(C6F5)4]和[Ph3C][B(C6F5)4]为活化剂制备的负载茂金属催化剂活性较高,并且以[Ph3C][B(C6F5)4]为活化剂制备的负载茂金属催化剂所得共聚物分子量分布最窄,乙烯/1-己烯共聚物中共单体含量最高,为2.97mol%;采用硼化物为活化剂制备的负载茂金属催化剂催化乙烯/1-己烯、乙烯/1-辛烯共聚合所得共聚产物分子量分布较窄,密度在0.91~0.92g/cm3之间,属于mLLDPE范畴。  相似文献   

3.
以硅胶为载体,以Cp2ZrC l2为主催化剂,分别以甲基铝氧烷(MAO)、三五氟苯基硼(B(C6F5)3)、N,N-二甲基苯铵四(五氟苯基)硼酸盐([HNMe2Ph][B(C6F5)4])、三苯碳鎓四(五氟苯基)硼酸盐([Ph3C][B(C6F5)4])、三五氟苯基硼/三甲基铝(B(C6F5)3/TMA)为活化剂制备了负载茂金属催化剂,考察了它们对乙烯均聚、乙烯/α-烯烃共聚合的影响.实验结果表明,当硼化物用量为5.1×10-4mol/g SiO 2,B/Zr在14.10~19.04之间时,负载茂金属催化剂催化烯烃聚合活性达107g/(molZ r·h),是相同条件下以MAO为活化剂时活性的511~1 090倍,同样达到107g/(molZ r·h)的催化活性,硼化物用量仅仅为MAO用量1/16;和B(C6F5)3相比,以[HNMe2Ph][B(C6F5)4]和[Ph3C][B(C6F5)4]为活化剂制备的负载茂金属催化剂活性较高,并且以[Ph3C][B(C6F5)4]为活化剂制备的负载茂金属催化剂所得共聚物分子量分布最窄,乙烯/1-己烯共聚物中共单体含量最高,为2.97%;采用硼化物为活化剂制备的负载茂金属催化剂催化乙烯/1-己烯、乙烯/1-辛烯共聚合所得共聚产物分子量分布较窄,密度在0.91~0.92 g/cm3之间,属于mL LDPE范畴.  相似文献   

4.
短链支化聚乙烯的合成与表征   总被引:1,自引:0,他引:1  
合成了两类结构明确的乙烯共聚物, 通过FTIR, GPC, 1H NMR和13C NMR表征了产物的分子结构, 分别研究了分子量和短链支化含量对两类共聚物结晶性能的影响. 采用阴离子聚合制备分子量(Mw)20000~110000、分子量分布为1.1的1,2-结构摩尔分数为7%左右的聚丁二烯. 加氢反应后得到乙烯/1-丁烯模型共聚物的熔点和结晶度随着分子量的增加而下降. 采用茂金属催化剂Et[Ind]2ZrCl2催化乙烯与1-己烯共聚合, 制备分子量为100000左右, 共聚单体摩尔分数为0~5.5%的乙烯/1-己烯共聚物, DSC结果表明其熔点和结晶度随着共聚物中1-己烯含量的升高而降低.  相似文献   

5.
合成了新型催化剂8-苯胺-1-萘磺酸钛配合物, 并应用于乙烯与降冰片烯的共聚合反应中. 分别考察了助催化剂种类[甲基铝氧烷(MAO)和三乙基铝(TEA)]、 降冰片烯浓度、 Al/Ti摩尔比、 聚合温度和聚合压力对催化活性与共聚性能的影响. 通过核磁共振、示差扫描量热和凝胶渗透色谱等对所制备的共聚物进行了表征. 结果表明, 在相同条件下, 以MAO为助催化剂时, 共聚催化活性更高, 催化剂为单活性中心, 可得到分子量分布较窄(PDI≈3)的共聚产物, 其共聚反应机理为加成聚合. 另外, 随着降冰片烯浓度的升高, 共聚物中降冰片烯单元的摩尔比呈线性上升趋势, 所得共聚物的熔点随之降低.  相似文献   

6.
为了碳桥限制构型催化剂(CpCN-CGC)的工业应用,为模试提供工艺参数,我们考察了用这种催化剂,以正庚烷为溶剂,甲基铝氧烷(MAO)为助催化剂的乙烯与1-己烯共聚,考察因素包括聚合温度、乙烯压力、铝锆比、氢气压力和1-己烯浓度.研究发现聚合温度从100升高到140℃,共聚活性先升高再降低,聚合物分子量持续降低;氢气分压从0.1增加到0.8 MPa,共聚活性仍呈先升高再降低,聚合物分子量持续降低的趋势;乙烯压力从0.4升高到1.8 MPa,共聚活性先升高再降低,但聚合物分子量逐步增大;Al/Zr从500升高到1 000,共聚活性逐步增大,但聚合物分子量趋向减小.优化工艺条件为:催化剂用量为10μmol,Al/Zr=700,聚合温度为110~120℃,乙烯压力为1.2~1.4 MPa,1-己烯加入量为20 mL,聚合时间为30 min.此时共聚活性最高达到106g/(mol-Zr·h),共聚物中1-己烯插入率达到了8.34%;用13C-NMR、GPC、DSC表征了聚合产物,计算了二单元组和三段组序列分布,并发现有交替共聚片段HEHE存在.最后还讨论了在聚合物中发现的多种支链的形成机理.  相似文献   

7.
以球形高效负载的TiCl4/MgCl2/邻苯二甲酸二异丁酯(DIBP)为催化剂,采用本体聚合方法进行丙烯与1-丁烯共聚合研究.考察了共单体效应对共聚活性及聚合物立构规整性的影响;表征了共聚物的结构.结果表明,随着1-丁烯/丙烯投料比的增加,聚合活性呈先升高后降低的趋势,在1-丁烯/丙烯摩尔投料比为0.26条件下聚合活性达到最高,并随着共聚物中1-丁烯含量的增加,共聚物的熔点明显下降,分子量降低,分子量分布变窄,同时共聚物力学性能有明显提高,透明度逐渐增加.  相似文献   

8.
以硅胶为载体,以 Cp2 ZrCl2为主催化剂,分别以甲基铝氧烷(MAO)、三五氟苯基硼(B(C6 F5)3)、N,N-二甲基苯铵四(五氟苯基)硼酸盐([HNMe2 Ph][B(C6 F5)4])、三苯碳四(五氟苯基)硼酸盐([Ph3 C][B(C6 F5)4])、三五氟苯基硼/三甲基铝(B(C6 F5)3/TMA)为活化剂制备了负载茂金属催化剂,考察了它们对乙烯均聚、乙烯/α-烯烃共聚合的影响.实验结果表明,当硼化物用量为5.1×10-4 mol/g SiO2,B/Zr 在14.10~19.04之间时,负载茂金属催化剂催化烯烃聚合活性达107 g/(molZr·h),是相同条件下以 MAO 为活化剂时活性的511~1090倍,同样达到107 g/(molZr·h)的催化活性,硼化物用量仅仅为 MAO 用量1/16;和 B(C6 F5)3相比,以[HNMe2 Ph][B(C6 F5)4]和[Ph3 C][B(C6 F5)4]为活化剂制备的负载茂金属催化剂活性较高,并且以[Ph3 C][B(C6 F5)4]为活化剂制备的负载茂金属催化剂所得共聚物分子量分布最窄,乙烯/1-己烯共聚物中共单体含量最高,为2.97%;采用硼化物为活化剂制备的负载茂金属催化剂催化乙烯/1-己烯、乙烯/1-辛烯共聚合所得共聚产物分子量分布较窄,密度在0.91~0.92 g/cm3之间,属于 mLLDPE 范畴.  相似文献   

9.
2种茂金属催化剂及1种后过渡金属催化剂分别被固载于经过甲基铝氧烷处理后的α-Ti(HPO_4)_2微球表面,制备得到3种微球负载型催化剂。在烯烃聚合反应过程中,3种负载型催化剂均表现出比硅胶负载型催化剂更高的催化活性。2种茂金属负载型催化剂在乙烯、丙烯聚合反应中的活性分别高达6.8×10~7 gPE·(molZr·h)~(-1)和5.0×10~7 gPP·(molZr·h)~(-1),所产生的烯烃聚合产物分子量分布较窄(Mw/Mn2.3),表现出良好的单中心催化特性,而且丙烯聚合产物的等规度高达96.5%。负载型后过渡金属催化剂在乙烯聚合反应中的活性稍低,但也能够达到8.3×10~6 gPE·(molFe·h)~(-1)。3种负载型催化剂催化烯烃聚合产物均成微球型,能够很好地复制载体的形貌。  相似文献   

10.
本文探索了乙烯/丙烯/极性单体三元共聚物的合成方法.乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚物由于分子中引入了ω-Cl-α-乙烯基极性单体,改变了乙烯丙烯共聚物的化学惰性.我们采用催化剂Cat.L-Pd配位催化乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚合,合成了极性三元无规共聚物.探讨了催化剂结构、聚合条件对三元共聚合行为的影响,并优化了聚合条件.采用红外光谱(FTIR)、核磁共振碳谱(氢谱)(~(13)C(~1H)NMR)、示差扫描量热(DSC)和高温凝胶渗透色谱(GPC)等方法研究了共聚物的结构与性能.FTIR与~(13)C(~1H)NMR结果表明,催化剂Cat.L-Pd能够有效催化乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚合,共聚物中ω-氯代极性单体的插入量达3.6 mol%.极性单体不发生均聚合反应,但能够有效参与乙烯和丙烯的共聚合反应,形成三元无规共聚物.丙烯能够发生均聚合反应,但是不能形成聚丙烯长链段,主要发生乙烯与丙烯共聚合反应.乙烯最易发生聚合反应,并能够形成较长链段的聚乙烯.共聚物的Mw高于2×10~5g/mol.分子量分布在1.6~3.0,说明该类催化剂催化乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚合行为遵循单中心聚合机理.  相似文献   

11.
��־ǿ 《高分子科学》2013,31(1):110-121
A supported TiCl4/MgCl2 catalyst without internal electron donor (O-cat) was prepared firstly. Then it was modified by 2,6-diisopropylphenol to make a novel modified catalyst (M-cat). These two catalysts were used to catalyze ethylene/1-hexene copolymerization and 1-hexene homopolymerization. The influence of cocatalyst and hydrogen on the catalytic behavior of these two catalysts was investigated. In ethylene/1-hexene copolymerization, the introduction of 2,6-iPr2C6H3O-groups did not deactivate the supported TiCl4/MgCl2 catalyst. Although the 1-hexene incorporation in ethylene/1-hexene copolymer prepared by M-cat was lower than that prepared by O-cat, the composition distribution of the former was narrower than that of the latter. Methylaluminoxane (MAO) was a more effective activator for M-cat than triisobutyl-aluminium (TIBA). MAO led to higher yield and more uniform chain structure. In 1-hexene homopolymerization, the presence of 2,6-iPr2C6H3O-groups lowered the propagation rate constants. Two types of active centers with a chemically bonded 2,6-iPr2C6H3O-group were proposed to explain the observed phenomena in M-cat.  相似文献   

12.
Distribution of active centers(ACD)of ethylene or 1-hexene homopolymerization and ethylene-1-hexene copolymerization with a MgCl_2/TiCl_4 type Z-N catalyst were studied by deconvolution of the polymer molecular weight distribution into multiple Flory components.Each Flory component is thought to be formed by a certain type of active center. ACD of ethylene-1-hexene copolymer with very low 1-hexene incorporation was compared with that of ethylene homopolymer to see the effect of introducingα-olefin on eth...  相似文献   

13.
本文研究乙烯与1-丁烯共聚反应时,添加硅化合物、苯基氯化镁、苯乙烯等促进剂对共聚作用的影响。考察乙烯与1-丁烯共聚衰减动力学行为,并用~(13)C-NMR测定共聚物组成、竞聚率及序列分布。  相似文献   

14.
A TiCl4/AlCl3/MgCl2 (Cat-B) catalyst containing 5.2 wt.% Al was prepared by the reaction of TiCl4 with ethanol adduct of AlCl3/MgCl2 mixture. A TiCl4/MgCl2 catalyst (Cat-A) without doped AlCl3 was also prepared by the same method. Ethylene-1-hexene copolymerization catalyzed by Cat-B in the presence of hydrogen showed slightly higher efficiency and higher 1-hexene incorporation than Cat-A. Comonomer incorporation was markedly increased when the cocatalyst AlEt3 was replaced by Al(i-Bu)3. Adding Ph2Si(OMe)2 as external donor in the catalyst system caused decrease in polymerization activity and 1-hexene incorporation. Each copolymer sample was fractionated into three fractions: n-heptane insoluble fraction (fraction A), n-heptane soluble and n-hexane insoluble fraction (fraction B) and n-hexane soluble fraction (fraction C). In most cases the amount of intermediate fraction (fraction B) was smaller than the other fractions and did not increase as the total 1-hexene content increase, indicating the presence of two classes of copolymer fractions with greatly different comonomer content and clear bimodality of the copolymer composition distribution. Doping AlCl3 in the catalyst, changing cocatalyst and adding external donor mainly changed the weight ratio of fraction A to fraction C, but exerted little influences on their composition. According to the sequence distribution data of the fractions, doping AlCl3 in the catalyst resulted in slight decrease of product of reactivity ratios (r1r2) in both fraction A and fraction C.  相似文献   

15.
TiCl_4/MgCl_2催化丙烯/1-辛烯共聚合研究   总被引:3,自引:2,他引:3  
本文用TiCl_4/MgCl_2-Al(i-Bu)_3催化剂进行丙烯/1-辛烯共聚合,研究发现引入少量共聚单体1-辛烯时,能提高丙烯的聚合活性。30℃时,测得共聚合竟聚率为r_丙=5.63,r_辛=0.32。共聚物的结晶度和己烷不溶物含量随其1-辛烯含量的增加而迅速下降。X射线衍射及~(13)C-NMR测定结果表明,共聚物的己烷可溶部分为非结晶的无规共聚物,己烷不溶部分是具有镶嵌着半个1-辛烯单体单元的长嵌段聚丙烯链结构的结晶性共聚物。  相似文献   

16.
以传统Ziegler-Natta催化体系TiCl4/Al(#em/em#-Bu)3催化降冰片烯(NBE)和异戊二烯(IP)的共聚合, 制得可溶于常规有机溶剂的共聚物, 其数均分子量为2.0 × 104~6.5 × 104, 分子量分布指数为1.5~2.9, 降冰片烯结构摩尔含量为26%~60%. 考察了助催化剂用量、 聚合温度及2种单体投料比对共聚合的影响. 结果表明, 当降冰片烯与异戊二烯的投料摩尔比为4∶6时, 于40 ℃聚合6 h, 得到的共聚物产率为96%, 数均分子量为6.5×104, 降冰片烯结构含量45%. 用 1H NMR, 13CNMR, GPC和DSC等方法表征了共聚产物的微观结构与热性能. 13C NMR DEPT结果表明, 共聚反应中降冰片烯单体以加成方式聚合. DSC结果显示, 共聚物只有一个玻璃化转变温度(Tg=20~40 ℃). 通过Kelen-Tüdös方法得到2种单体的竞聚率分别为rNBE=0.07, rIP=0.44.  相似文献   

17.
This article reveals the effects of mixed activators on ethylene polymerization and ethylene/1-hexene copolymerization over MgCl?/SiO?-supported Ziegler-Natta (ZN) catalysts. First, the conventional ZN catalyst was prepared with SiO? addition. Then, the catalyst was tested for ethylene polymerization and ethylene/1-hexene (E/H) co-polymerization using different activators. Triethylaluminum (TEA), tri-n-hexyl aluminum (TnHA) and diethyl aluminum chloride (DEAC), TEA+DEAC, TEA+TnHA, TnHA+ DEAC, TEA+DEAC+TnHA mixtures, were used as activators in this study. It was found that in the case of ethylene polymerization with a sole activator, TnHA exhibited the highest activity among other activators due to increased size of the alkyl group. Further investigation was focused on the use of mixed activators. The activity can be enhanced by a factor of three when the mixed activators were employed and the activity of ethylene polymerization apparently increased in the order of TEA+ DEAC+TnHA > TEA+DEAC > TEA+TnHA. Both the copolymerization activity and crystallinity of the synthesized copolymers were strongly changed when the activators were changed from TEA to TEA+DEAC+TnHA mixtures or pure TnHA and pure DEAC. As for ethylene/1-hexene copolymerization the activity apparently increased in the order of TEA+DEAC+TnHA > TEA+TnHA > TEA+DEAC > TnHA+DEAC > TEA > TnHA > DEAC. Considering the properties of the copolymer obtained with the mixed TEA+DEAC+TnHA, its crystallinity decreased due to the presence of TnHA in the mixed activator. The activators thus exerted a strong influence on copolymer structure. An increased molecular weight distribution (MWD) was observed, without significant change in polymer morphology.  相似文献   

18.
丙烯丁烯共聚物的组成和等规度分布   总被引:8,自引:0,他引:8  
丙烯丁烯共聚物的组成和等规度分布徐君庭封麟先杨士林(浙江大学高分子科学与工程学系杭州310027)关键词丙烯丁烯共聚物,Ziegler Nata催化剂,分级用负载型Ziegler Nata催化剂制备的聚丙烯其等规度往往分布较宽,具有一定的分散性...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号