首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Alzheimer's disease, copper binds to amyloid beta (Aβ) peptide and generates oxidative stress. The coordination of histidine (His) residues to Cu(2+) is still uncertain. We studied Cu(2+) binding to Aβ1-16 peptide using the diethyl pyrocarbonate (DEPC) assay and mass spectrometry. Our results show that only one His is involved in Cu(2+) coordination, which is identified as His6 using mass spectral studies. Novel nickel displacement studies have further supported the proposal that the Cu(2+) binding site of Aβ1-16 peptide resembles the ATCUN motif of human serum albumin.  相似文献   

2.
Alzheimer's disease (AD) is becoming a rapidly growing health problem, as it is one of the main causes of dementia in the elderly. Interestingly, copper(II) (together with zinc and iron) ions are accumulated in amyloid deposits, suggesting that metal binding to Abeta could be involved in AD pathogenesis. In Abeta, the metal binding is believed to occur within the N-terminal region encompassing the amino acid residues 1-16. In this work, potentiometric, spectroscopic (UV-vis, circular dichroism, and electron paramagnetic resonance), and electrospray ionization mass spectrometry (ESI-MS) approaches were used to investigate the copper(II) coordination features of a new polyethylene glycol (PEG)-conjugated Abeta peptide fragment encompassing the 1-16 amino acid residues of the N-terminal region (Abeta(1-16)PEG). The high water solubility of the resulting metal complexes allowed us to obtain a complete complex speciation at different metal-to-ligand ratios ranging from 1:1 to 4:1. Potentiometric and ESI-MS data indicate that Abeta(1-16)PEG is able to bind up to four copper(II) ions. Furthermore, in order to establish the coordination environment at each metal binding site, a series of shorter peptide fragments of Abeta, namely, Abeta(1-4), Abeta(1-6), AcAbeta(1-6), and AcAbeta(8-16)Y10A, were synthesized, each encompassing a potential copper(II) binding site. The complexation properties of these shorter peptides were also comparatively investigated by using the same experimental approach.  相似文献   

3.
Human prion protein (hPrP) fragments encompassing the 91-120 region, namely hPrP92-100 (SP1), hPrP106-113 (SP2), hPrP91-120 (LP1), and hPrP91-114 (LP2), were considered for delineation of the Cu(II)-binding site(s). NMR and EPR spectroscopy results obtained from LP1 or LP2 were compared with those obtained from SP1 and SP2. The coexistence of two binding sites, one centered at His96 and the other at His111, was evidenced and ratified by ESI mass spectrometry at low and high metal:peptide ratios. While room-temperature NMR spectroscopy data were consistent with the binding site centered on His111 being approximately fourfold stronger than that centered on His96, low-temperature EPR spectroscopy results yielded evidence for the opposite trend. This disagreement, which has also occurred in the literature, was clarified by temperature-dependent molecular dynamics runs that demonstrated Met112 approaching the metal at room temperature, a process that is expected to stabilize the His111-centered binding site through hydrophobic shielding of the metal coordination sphere.  相似文献   

4.
The aim of this work was to check experimentally the relationship between the five-nitrogen donor system {3 × Nimid, 2 × N} seen e.g. in the peptide fragments of the cysteine-rich amyloid precursor protein (APP) region and the albumin-like {NH2, 2 × N, Nimid} coordination site. The protected and unprotected octadecapeptides DAHQERMDVSETHLHWHT and Ac-DAHQERMDVSETHLHWHT-NH2 were synthesized and potentiometric and spectroscopic studies were performed. A comparison of both metal-binding sites that occur in both peptides clearly shows that in the unprotected ligand albumin-like binding is much more efficient than the three His site, although around pH 5 both sites have a comparable ability to bind the Cu(II) ion. However, a comparison of the protected and unprotected peptides with their metal binding sites clearly shows that the three His site is very efficient in binding Cu(II) although less effective than the albumin-like motif.  相似文献   

5.
The prion protein (PrP) is a Cu(2+)-binding cell-surface glycoprotein. Using PrP peptide fragments, by means of potentiometric, spectroscopic and thermodynamic techniques, we have shown that Cu(2+) ions bind to the region comprising His-96, His-111 and the octarepeat domain within residues 60-91. Cu(2+) may bind in different modes, which strongly depend both on His position within the peptide sequence and on the adjacent residues. We have used a series of protected oligopeptides having His at the C- or the N-terminus, inducing different binding modes to amide nitrogens around the His residue, either towards the N- or C-terminus. His imidazole acts as an anchoring site for Cu(2+) and then binding to ionized amide nitrogens follows. When it is directed towards the C-terminus the formation of a less stable seven-membered chelate ring with a {N(im), N(-)} binding mode occurs. When coordination goes towards the N-terminus the thermodynamically more stable six-membered chelate ring is formed. NMR data suggest that both the coordination modes are possible for the model peptides; however, the thermodynamic measurements show that they only slightly differ in energy and the influence of the adjacent amino acid residues can address the coordination toward the C- or the N-terminus.  相似文献   

6.
The formation of mixed copper(II) and zinc(II) complexes with Aβ(1-16)-PEG has been investigated. The peptide fragment forms stable mixed metal complexes at physiological pH in which the His13/His14 dyad is the zinc(II)'s preferred binding site, while copper(II) coordination occurs at the N-terminus also involving the His6 imidazole. Copper(II) is prevented by zinc(II) excess from the binding to the two His residues, His13 and His14. As the latter binding mode has been recently invoked to explain the redox activity of the copper-Aβ complex, the formation of ternary metal complexes may justify the recently proposed protective role of zinc(II) in Alzheimer's disease. Therefore, the reported results suggest that zinc(II) competes with copper for Aβ binding and inhibits copper-mediated Aβ redox chemistry.  相似文献   

7.
Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper-translocating ATPase (ATP7A), but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1 (15)N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased toward 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met, whereas at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.  相似文献   

8.
The interaction of amyloid-β (Aβ) peptide with Cu(II) appears to play an important role in the etiology of Alzheimer's disease. At physiological pH, the Cu(II) coordination in Aβ is heterogeneous, and there exist at least two binding modes in which Cu(II) is coordinated by histidine residues. Electron spin resonance studies have revealed a picture of the Cu(II) binding at a higher or lower pH, where only one of the two binding modes is almost exclusively present. We describe a procedure to directly examine the coordination of Cu(II) to each histidine residue in the dominant binding mode at physiological pH. We use nonlabeled and residue-specifically (15)N-labeled Aβ(1-16). For quantitative analysis, the intensities of three-pulse electron spin-echo envelope modulation (ESEEM) spectra are analyzed. Spectral simulations show that ESEEM intensities provide information about the contribution of each histidine residue. Indeed, the ESEEM experiments at pH 6.0 confirm the dominant contribution of His6 to the Cu(II) coordination as expected from the work of other researchers. Interestingly, however, the ESEEM data obtained at pH 7.4 reveal that the contributions of the three residues to the Cu(II) coordination are in the order of His14 ≈ His6 > His13 in the dominant binding mode. The order indicates a significant contribution from the simultaneous coordination by His13 and His14 at physiological pH, which has been underappreciated. These findings are supported by hyperfine sublevel correlation spectroscopy experiments. The simultaneous coordination by the two adjacent residues is likely to be present in a non-β-sheet structure. The coexistence of different secondary structures is possibly the molecular origin for the formation of amorphous aggregates rather than fibrils at relatively high concentrations of Cu(II). Through our approach, precise and useful information about Cu(II) binding in Aβ(1-16) at physiological pH is obtained without any side-chain modification, amino acid residue replacement, or pH change, each of which might lead to an alteration in the peptide structure or the coordination environment.  相似文献   

9.
Waglerin I is a 22 amino acid snake venom toxin. Its three fragments (GGKPDLRPCHP-NH2, PCHYIPRPKPR-NH2, PCHPPCHYIPR-NH2), due to the presence of two Cys and His residues, are potentially very attractive ligands for transition metal ions. The main aim of this work was to establish the impact of these two adjacent residues on Ni2+ ion binding, especially because this kind of motif is very common in nature, and the study of low molecular weight models could be helpful in understanding larger systems. In this work waglerin fragments and their N-protected analogues were studied with Ni2+ (and Cu2+ for peptides with disulfide bridges) ions using combined potentiometric and spectroscopic measurements (UV-Vis, CD, EPR and NMR). In all peptides, except PCHPPCHYIPR-NH2 with a disulfide bridge, the Cys-His motif was found to be crucial for the coordination of Ni2+ ions. In the case of the N-unprotected analogues, the N-terminal amino group participates in the coordination as well.  相似文献   

10.
The type 1 copper sites of cupredoxins typically have a His(2)Cys equatorial ligand set with a weakly interacting axial Met, giving a distorted tetrahedral geometry. Natural variations to this coordination environment are known, and we have utilized paramagnetic (1)H NMR spectroscopy to study the active-site structure of umecyanin (UMC), a stellacyanin with an axial Gln ligand. The assigned spectra of the Cu(II) UMC and its Ni(II) derivative [Ni(II) UMC] demonstrate that this protein has the typical His(2)Cys equatorial coordination observed in other structurally characterized cupredoxins. The NMR spectrum of the Cu(II) protein does not exhibit any paramagnetically shifted resonances from the axial ligand, showing that this residue does not contribute to the singly occupied molecular orbital (SOMO) in Cu(II) UMC. The assigned paramagnetic (1)H NMR spectrum of Ni(II) UMC demonstrates that the axial Gln ligand coordinates in a monodentate fashion via its side-chain amide oxygen atom. The alkaline transition, a feature common to stellacyanins, influences all of the ligating residues but does not alter the coordination mode of the axial Gln ligand in UMC. The structural features which result in Cu(II) UMC possessing a classic type 1 site as compared to the perturbed type 1 center observed for other stellacyanins do not have a significant influence on the paramagnetic (1)H NMR spectra of the Cu(II) or Ni(II) proteins.  相似文献   

11.
Two peptide sequences from PARK9 Parkinson's disease gene, ProAspGluLysHisGluLeu, (P(1)D(2)E(3)K(4)H(5)E(6)L(7)) (1) and PheCysGlyAspGlyAlaAsnAspCysGly (F(1)C(2)G(3)D(4)G(5)A(6)N(7)D(8)C(9)G(10)) (2) were tested for Mn(II), Zn(II) and Ca(II) binding. The fragments are located from residues 1165 to 1171 and 1184 to 1193 in the PARK9 encoded protein. This protein can protect cells from poisoning of manganese, which is an environmental risk factor for a Parkinson's disease-like syndrome. Mono- and bi-dimensional NMR spectroscopy has been used to understand the details of metal binding sites at different pH values and at different ligand to metal molar ratios. Mn(II) and Zn(II) coordination with peptide (1) involves imidazole N(ε) or N(δ) of His(5) and carboxyl γ-O of Asp(2), Glu(3) and Glu(6) residues. Six donor atoms participate in Mn(II) binding resulting in a distorted octahedral geometry, possibly involving bidentate interaction of carboxyl groups; four donor atoms participate in Zn(II) binding resulting in a tetracoordinate geometry. Mn(II) and Zn(II) coordination involves the two cysteine residues with peptide (2); Mn(II) accepts additional ligand bonds from the carboxyl γ-O of Asp(4) and Asp(8) to complete the coordination sphere; the unoccupied sites may contain solvent molecules. The failure of Ca(II) ions to bind to either peptide (1) or (2) appears to result, under our conditions, from the absence of chelating properties in the chosen fragments.  相似文献   

12.
The molecular chaperone αB‐crystallin, the major player in maintaining the transparency of the eye lens, preventing the aggregation of stress‐damaged and aging lens proteins from aggregation. In nonlenticular cells, it is involved in various neurological diseases, diabetes, and cancer. The role of some metal ions in the αB‐crystallin biology has been reported. Theoretical calculations have proposed that the coordination sites involving His101, His119, Lys121, His18 and Glu99 of human αB‐crystallin were the binding sites for divalent metal ions. Our previous mutagenesis study suggested that His18 rat lens αB‐crystallin is a crucial binding site for Cu(II) and Zn(II) in terms of chaperone‐like activity and structure. In this study mutant H119G of rat lens αB‐crystalin was cloned and expressed to investigate whether His119 is the coordination binding site. Copper and zinc at 1 mM concentration significantly increase the chaperone‐like activity in wild type αB‐crystalin, whereas zinc, copper and magnesium at 1 mM reduced the activity of H119G significantly. The results from chaperone‐like activity, ANS fluorescence measurement and Far‐and Near‐UV CD studies suggest that the replacement of His119 with Glycine resulted in a conformational and minor environmental changes that decrease chaperone‐like activity in the presence of divalent ions suggested that His119 was a crucial binding site for Cu(II) and Zn(II), which was similar to our previous study results of His18. Both results together suggest that His18 and His119 coordinates each other for the binding site of Cu(II) and Zn(II) in terms of improving the chaperone‐like activity and stability of crystallin/metal ion complex.  相似文献   

13.
There is a significant overlap between brain areas with Zn(2+) and Cu(2+) pathological dys-homeostasis and those in which the nerve growth factor (NGF) performs its biological role. The protein NGF is necessary for the development and maintenance of the sympathetic and sensory nervous systems. Its flexible N-terminal region has been shown to be a critical domain for TrkA receptor binding and activation. Computational analyses show that Zn(2+) and Cu(2+) form pentacoordinate complexes involving both the His4 and His8 residues of the N-terminal domain of one monomeric unit and the His84 and Asp105 residues of the other monomeric unit of the NGF active dimer. To date, neither experimental data on the coordination features have been reported, nor has one of the hypotheses according to which Zn(2+) and Cu(2+) may have different binding environments or the Ser1 α-amino group could be involved in coordination been supported. The peptide fragment, encompassing the 1-14 sequence of the human NGF amino-terminal domain (NGF(1-14)), blocked at the C terminus, was synthesised and its Cu(2+) and Zn(2+) complexes characterized by means of potentiometric and spectroscopic (UV/Vis, CD, NMR, and EPR) techniques. The N-terminus-acetylated form of NGF(1-14) was also investigated to evaluate the involvement of the Ser1 α-amino group in metal-ion coordination. Our results demonstrate that the amino group is the first anchoring site for Cu(2+) and is involved in Zn(2+) coordination at physiological pH. Finally, a synergic proliferative activity of both NGF(1-14) and the whole protein on SHSY5Y neuroblastoma cell line was found after treatment in the presence of Cu(2+). This effect was not observed after treatment with the N-acetylated peptide fragment, demonstrating a functional involvement of the N-terminal amino group in metal binding and peptide activity.  相似文献   

14.
The synthetic peptide encompassing residues 106-126 (PrP106-126, KTNMKHMAGAAAAGAVVGGLG) of the human prion protein was considered for its binding properties toward copper(II), manganese(II) and zinc(II) at pH 5.7. 1H and 13C 1D spectra, 1H spin-lattice relaxation rates, and 1H-15N and 1H-13C HSQC 2D experiments were obtained in the absence and in the presence of metal ions. While Zn(II) was found to yield negligible effects upon any NMR parameter, metal-peptide association was demonstrated by the paramagnetic effects of Cu(II) and Mn(II) upon 1D and 2D spectra. Delineation of structures of metal complexes was sought by interpreting the paramagnetic effect on 1H spin-lattice relaxation rates. Exchange of peptide molecules from the metal coordination sphere was shown to provide sizable contribution to the observed relaxation rates. Such contribution was calculated in the case of Cu(II); whereas the faster paramagnetic rates of peptide molecules bound to Mn(II) were determining spin-lattice relaxation rates almost exclusively dominated by exchange. Proton-metal distances were therefore evaluated in the case of the Cu(II) complex only and used as restraints in molecular dynamics calculations where from the structure of the complex was obtained. The peptide was shown to bind copper through the imidazole nitrogen and the ionized amide nitrogen of His-111 and the amino-terminal group with the terminal carboxyl stabilizing the coordination sphere through ionic interactions. The data were interpreted as to demonstrate that the hydrophobic C-terminal region was not affecting the copper-binding properties of the peptide and that this hydrophobic tail is left free to interact with other target molecules. As for the complex with Mn(II), qualitative information was obtained on carbonyl oxygens of Gly-124 and Leu-125, beyond the terminal Gly-126 carboxyl, being at close distance from the metal ion, that also interacts, most likely, through a hydrogen bond of metal-bound water, with the imidazole ring of His-111.  相似文献   

15.
The Hpn-like protein (Hpnl), a histidine- and glutamine-rich protein, is critical for Helicobacter pylori colonization in human gastric muscosa. In this study, the thermodynamic properties of Ni(II), Cu(II), Co(II), and Zn(II) toward Hpnl were studied by isothermal titration calorimetry (ITC). We found that Hpnl exhibits two independent binding sites for Ni(II) as opposed to one site for Cu(II), Co(II), and Zn(II). Protease digestion and chemical denaturation analysis further revealed that Ni(II) confers a higher stability upon Hpnl than other divalent metal ions. The potential Ni(II) binding sites are localized in the His-rich domain of Hpnl as confirmed by mutagenesis in combination with modification of histidine residues of the protein. We also demonstrated that the single mutants (H29A and H31A) and tetrameric mutant (H29-32A) cut nearly half of the binding capacity of Hpnl towards nickel ions, whereas other histidine residues (His30, 32, 38, 39, 40, and 41) are nonessential for nickel coordination. Escherichia coli cells that harbored H29A, H31A, and H29-32A mutant genes exhibited less tolerance toward high concentrations of extracellular nickel ions than those with the wild-type gene. Our combined data indicated that the conserved histidine residues, His29 and His31 in the His-rich domain of Hpnl, are critical for nickel binding, and such a binding is important for Hpnl protein to fulfill its biological functions.  相似文献   

16.
The interaction of the monooxygenating type-3 copper enzyme Tyrosinase (Ty) from Streptomyces antibioticus with its inhibitor p-nitrophenol (pnp) was studied by paramagnetic NMR methods. The pnp binds to oxidized Ty (Ty(met)) and its halide (F(-), Cl(-)) bound derivatives with a dissociation constant in the mM range. The Cu(2) bridging halide ion is not displaced upon the binding of pnp showing that the pnp does not occupy the Cu(2) bridging position. The binding of pnp to Ty(met) or Ty(met)Cl leads to localized changes in the type-3 (Cu-His(3))(2) coordination geometry reflecting a change in the coordination of a single His residue that, still, remains coordinated to Cu. The binding of pnp to Ty(met)Cl causes a decrease in the Cu(2) magnetic exchange parameter -2J from 200 cm(-)(1) in the absence to 150 +/- 10 cm(-)(1) in the presence of pnp. From the (1)H and (2)D NMR relaxation parameters of pnp bound to Ty(met), a structural model of pnp coordination to the Ty type-3 center could be derived. The model explains the absence of hydroxylase activity in the closely related type-3 copper protein catechol oxidase. The relevance of the experimental findings toward the Ty catalytic mechanism is discussed.  相似文献   

17.
Cu(A) is an electron-transfer copper center present in heme-copper oxidases and N2O reductases. The center is a binuclear unit, with two cysteine ligands bridging the metal ions and two terminal histidine residues. A Met residue and a peptide carbonyl group are located on opposite sides of the Cu2S2 plane; these weaker ligands are fully conserved in all known Cu(A) sites. The Met160Gln mutant of the soluble subunit II of Thermus thermophilus ba3 oxidase has been studied by NMR spectroscopy. In its oxidized form, the binuclear copper is a fully delocalized mixed-valence pair, as are all natural Cu(A) centers. The faster nuclear relaxation in this mutant suggests that a low-lying excited state has shifted to higher energies compared to that of the wild-type protein. The introduction of the Gln residue alters the coordination mode of His114 but does not affect His157, thereby confirming the proposal that the axial ligand-to-copper distances influence the copper-His interactions (Robinson, H.; Ang, M. C.; Gao, Y. G.; Hay, M. T.; Lu, Y.; Wang, A. H. Biochemistry 1999, 38, 5677). Changes in the hyperfine coupling constants of the Cys beta-CH2 groups are attributed to minor geometrical changes that affect the Cu-S-C(beta)-H(beta) dihedral angles. These changes, in addition, shift the thermally accessible excited states, thus influencing the spectral position of the Cys beta-CH2 resonances. The Cu-Cys bonds are not substantially altered by the Cu-Gln160 interaction, in contrast to the situation found in the evolutionarily related blue copper proteins. It is possible that regulatory subunits in the mitochondrial oxidases fix the relative positions of thermally accessible Cu(A) excited states by tuning axial ligand interactions.  相似文献   

18.
Metal ions (Zn(II)) are demonstrated as probes of amyloid structure in simple segments of the Abeta peptide, Abeta(13-21). By restricting the possible metal binding sites to His13/His14 dyad, we show that Zn2+ can specifically control the rate of self-assembly and dramatically regulate amyloid morphology via distinct coordination environments as characterized by X-ray absorption spectroscopy. The data establish that the single His13 is sufficient to coordinate Zn2+ productively for typical amyloid fiber formation, while a distinct Zn2+ coordination environment can be accessed in the presence of His13/Hi14 dyad to stabilize sheet/sheet associations and the transition to a ribbon/tube morphology.  相似文献   

19.
Two histidine-rich branched peptides with one lysine as a branching unit have been designed and synthesized by solid-phase peptide synthesis. Their complex formation with Cu(II) and Zn(II) as well as their ability to attenuate the metal-ion induced amyloid aggregation has been characterized. Both peptides can keep Cu(II) and Zn(II) in complexed forms at pH 7.4 and can bind two equivalents of metal ions in solutions with excess metal. The stoichiometry, stability and structure of the complexes formed have been determined by pH potentiometry, UV-Vis spectrophotometry, circular dichroism, EPR and NMR spectroscopy and ESI-MS. Both mono- and bimetallic species have been detected over the whole pH range studied. The basic binding mode is either a tridentate {N(amino), N(amide), N(im)} or a histamine-type of coordination which is complemented by the binding of far imidazole or amino groups leading to macrochelate formation. The peptides were able to prevent Cu(II)-induced Aβ(1-40) aggregation but could not effectively compete for Zn(II) in vitro. Our results suggest that branched peptides containing potential metal-binding sites may be suitable metal chelators for reducing the risk of amyloid plaque formation in Alzheimer's disease.  相似文献   

20.
A 31-mer polypeptide, which encompasses residues 84-114 of human prion protein HuPrP(84-114) and contains three histidyl residues, namely one from the octarepeat (His85) and two histidyl residues from outside the octarepeat region (His96 and His111), and its mutants with two histidyl residues HuPrP(84-114)His85Ala, HuPrP(84-114) His96Ala, HuPrP(84-114)His111Ala and HuPrP(91-115) have been synthesised and their Cu2+ complexes studied by potentiometric and spectroscopic (UV/Vis, CD, EPR, ESI-MS) techniques. The results revealed a high Cu2+-binding affinity of all peptides, and the spectroscopic studies made it possible to clarify the coordination mode of the peptides in the different complex species. The imidazole nitrogen donor atoms of histidyl residues are the exclusive metal-binding sites below pH 5.5, and they have a preference for macrochelate structure formation. The deprotonation and metal-ion coordination of amide functions take place by increasing the pH; all of the histidines can be considered to be independent metal-binding sites in these species. As a consequence, di- and trinuclear complexes can be present even in equimolar samples of the metal ion and peptides, but the ratios of polynuclear species do not exceed the statistically expected ones; this excludes the possibility of cooperative Cu2+ binding. The species with a (N(im),N,N)-binding mode are favoured around pH 7, and their stability is enhanced by the macrochelation from another histidyl residue in the mononuclear complexes. The independence of the histidyl sites results in the existence of coordination isomers and the preference for metal binding follows the order of: His111>His96>His85. Deprotonation and metal-ion coordination of the third amide functions were detected in slightly alkaline solutions at each of the metal-binding sites; all had a (N(im),N,N,N)-coordination mode. Spectroscopic measurements also made it clear that the four lysyl amino groups of the peptides are not metal-binding sites in any cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号