首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gualou-Xiebai-Banxia decoction (GXB) is a famous classical traditional Chinese medicine (TCM) formula for the treatment of coronary heart disease (CHD, namely chest stuffiness and pain syndrome in Chinese medicine). Compared with Gualou-Xiebai-Baijiu decoction, which only consists of Trichosanthis Pericarpium (TP), Allii Macrostemonis Bulbus (AMB) and wine, GXB comprises one additional herbal medicine, Pinellinae Rhizoma Praeparatum (PRP). However, due to a lack of kinetic profile studies on GXB, its in vivo components with high exposure remain unknown, making it difficult to interpret bioactive components likely linked to its efficacy, but also fails to provide substance-related evidence for reflecting the compatibility in GXB. The goal of this study was to systematically characterize the kinetic features of GXB in rat plasma and intestine content for revealing its in vivo high-exposure components on the basis of their metabolic fates, and to compare the kinetic differences between GXB and GXB-dePRP (GXB deducted PRP) for describing the chemical contribution of PRP to the compatibility in GXB. Firstly, the metabolic profile of GXB was systematically investigated by UPLC-Q/TOF-MS. Subsequently, quantitative methods for representative xenobiotics in rat plasma and intestine content were respectively validated and developed by UPLC-TQ-MS. Then, the established approaches were successfully applied to characterize the kinetic features of GXB through estimating pharmacokinetic parameters. These results showed that only a few kinds of xenobiotics at low exposure levels were observed in plasma, while various xenobiotics possessed high exposure in intestine content. Among them, steroidal saponins and triterpenoid saponins displayed relatively high exposure in plasma and intestine content, which are likely associated with the therapeutic effects of GXB. Moreover, there were no significant differences between metabolic profiles of GXB and GXB-dePRP, whereas the pharmacokinetic parameters, including area under the concentration–time curve (AUC) and Cmax (p < 0.05) for most xenobiotics in GXB were significantly larger than those in GXB-dePRP, implying that the introduction of PRP improved the bioavailability of constituents from TP and AMB. Altogether, this study laid a solid foundation and provided theoretical guidance for further clarification of bioactive components of GXB, as well as the synergistic effect of PRP to the compatibility in GXB.  相似文献   

2.
《Arabian Journal of Chemistry》2020,13(11):8309-8337
The release of persistent organic pollutants (POPs) into the environment is an issue of global concern, as the chemicals are stable over a prolonged period resulting in their accumulation in many animals and plants. Although POPs are banned in several countries, many chemicals have been proposed as POP candidates to be added to the existing compounds as defined by the United Nations Stockholm Convention committee. To address the safe disposal and clean-up of such chemicals, new, and especially cost-effective, remediation technologies for POPs are urgently required. This review focuses on existing POPs and the types of remediation processes available for their removal. Particular attention is paid towards photocatalysis using nanocatalysts in this review, due to their effectiveness towards POP degradation, technological feasibility, and energy and cost-efficiency. The underlying principles and the key mechanisms of the photocatalysts based on TiO2 based materials, metal oxides, light-assisted Fenton systems, framework materials e.g. metal-organic frameworks and polyoxometalates, including metal-free and hybrid photocatalysts for POPs cleanup are described for advance applications in solving the POPs contamination in the environment. The improvements of photocatalytic performance especially the POPs removal mechanism using the conventional and modified process, the design and optimization of photoreactors, and the integration technology are the critical challenges for the emerging pollutants and require intensive research for the forthcoming future.  相似文献   

3.
Yinlan lipid regulatory capsule (YL) is a composite traditional Chinese medicine (TCM) new drug to alleviate hyperlipidemia, while its therapeutic mechanism in vivo was not clarified with nontargeted metabolomics investigation. An animal model was established in rats fed a high-fat diet, and their body weights, body mass index (BMI) and blood cholesterol levels were measured. Serum, liver and kidney tissue samples were also extracted for PXR-CYP3A4-ABCB1-FXR signaling pathway research using PCR and UHPLC–MS. The obtained plasma samples were analyzed by UHPLC-Q-TOF-MS metabolomic investigation, which revealed PXR-CYP3A4-related metabolites and changes induced by YL. Finally, the key metabolites were chosen as index components, and their levels in the serum, liver, small intestine and bile were used for simultaneous UHPLC–MS-MS determination. The results indicated that YL was effective in rebalancing blood TG and TC levels (compared to controls). With respect to the PXR-CYP3A4-ABCB1 pathway, as a result of YL’s effect, gene expression or activity of the two targets decreased significantly in both the liver and kidney. The same trend was observed in the serum samples mentioned above. Metabolomics screening and data revealed that 44 metabolites can be regarded as biomarkers related to hyperlipidemia, fatty acids synthesis, and body energy consumption, as well as synthesis, transportation and exertion of cholesterol. YL’s treatment focused on 26 of them, primarily bile acids, indicating that the antihyperlipidemic effect of this drug lies in its inhibitory activity of cholesterol metabolism. Subsequent analysis of those in vivo components revealed that significant increases (compared to the model group) occurred in the blood, liver, small intestine and bile in groups that received medium and high doses of YL (while the low dose was relatively unchanged). Those target components exhibit a close relationship with PXR and/or CYP3A4. The use of YL repressed PXR expression and subsequently decreased CYP3A4 activity. As a result, synthesis of related bile acids increased, while cholesterol levels decreased, consequently leading to the attenuation of hyperlipidemia. This study comprehensively investigated the antihyperlipidemia mechanism of YL based on its repression of PXR-CYP3A4 activity and related metabolite yield, establishing an accurate method for evaluating the therapeutic effect of YL.  相似文献   

4.
《Arabian Journal of Chemistry》2020,13(11):8424-8457
Nowadays, increasing extortions regarding environmental problems and energy scarcity have stuck the development and endurance of human society. The issue of inorganic and organic pollutants that exist in water from agricultural, domestic, and industrial activities has directed the development of advanced technologies to address the challenges of water scarcity efficiently. To solve this major issue, various scientists and researchers are looking for novel and effective technologies that can efficiently remove pollutants from wastewater. Nanoscale metal oxide materials have been proposed due to their distinctive size, physical and chemical properties along with promising applications. Cupric Oxide (CuO) is one of the most commonly used benchmark photocatalysts in photodegradation owing to the fact that they are cost-effective, non-toxic, and more efficient in absorption across a significant fraction of solar spectrum. In this review, we have summarized synthetic strategies of CuO fabrication, modification methods with applications for water treatment purposes. Moreover, an elaborative discussion on feasible strategies includes; binary and ternary heterojunction formation, Z-scheme based photocatalytic system, incorporation of rare earth/transition metal ions as dopants, and carbonaceous materials serving as a support system. The mechanistic insight inferring photo-induced charge separation and transfer, the functional reactive radical species involved in a photocatalytic reaction, have been successfully featured and examined. Finally, a conclusive remark regarding current studies and unresolved challenges related to CuO are put forth for future perspectives.  相似文献   

5.
6.
Ethnopharmacological relevanceMetabolic syndrome is closely related to the intestinal microbiota and disturbances in the host metabolome. Hyperuricemia (HUA), a manifestation of metabolic syndrome, can induce various cardiovascular diseases and gout, seriously affecting a patient’s quality of life. Astragalus membranaceus has a long history as a commonly used traditional Chinese medicine to treat kidney disease in China and East Asia.Materials and methodsWe compared the therapeutic effect of benzbromarone and two different doses Astragalus membranaceus ultrafine powder (AMUP) in rats with HUA. Ultra-performance liquid chromatography-mass spectrometer was used to analyze the AMUP metabolism in the plasma, urine, and feces. Further, 16S ribosome RNA sequencing and feces metabolomic were performed to capture the variation of the gut microbiota and metabolites changes before and after drug administration.ResultsAMUP had a notable impact on reducing blood uric acid levels while protecting the liver and kidney. Drug metabolism analysis demonstrated that effective constituent flavonoids are distributed in the blood, whereas saponins remain in the intestine. Gut microbiota analysis showed that low-dose AMUP ameliorated HUA-induced gut dysbiosis by reducing the abundance of harmful bacteria and increasing that of some beneficial bacteria with anti-inflammatory properties, such as Clostridia, Lachnospiraceae, and Muribaculaceae. In addition, HUA-induced changes in metabolite contents in bile acid and adrenal hormone biosynthesis pathways were restored after treatment with AMUP.ConclusionLow-dose AMUP exerts remarkable therapeutic effects on HUA by regulating the gut microbiome and mediating gut metabolism pathways associated with uric acid excretion.  相似文献   

7.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   

8.
According to the Food and Agriculture Organization of the United Nations, approximately 1.3 billion tons of food is wasted each year, equivalent to approximately one-third of world production. Agri-food wastes are the source of proteins, carbohydrates, lipids, and other essential minerals that have been exploited for value-added products by the development of biorefineries and sustainable business as important elements of circular economies. The innovation and materialization of these types of processes, including the use of disruptive technologies on microbial bioconversion and enzyme technology, such as nanotechnology, metabolic engineering, and multi-omics platforms, increase the perspectives on the waste valorization process. Lignocellulolytic enzymes, pectinases, and proteases are mainly used as catalyzers on agri-food waste treatment, and their production in house might be the trend in near future for agro-industrial countries. Another way to transform the agri-food wastes is via aerobic or anaerobic microbial process from fungal or bacterial cultures; these processes are the key to produce waste enzymes.  相似文献   

9.
Dioscorea nipponica Makino exhibits many biological activities, including relieving cough, eliminating phlegm and preventing asthma. The present study extensively evaluated the extraction process, major components, antioxidant, antibacterial and anti-inflammatory activities of total saponins extraction from Dioscorea nipponica Makino. In this study, the optimal extraction process of total saponins extract was optimized by single-factor test and response surface methodology as follows: extraction time 25 min, ethanol concentration 50 % and liquid to material ratio 55:1 ml/g, and the extraction rate was 1.72 %. Eighteen components were initially analyzed by UPLC-QTOF-MS method. Although total saponins extract exhibited mild antibacterial activities against Escherichia coli, Salmonella, Staphylococcus aureus and Streptococcus, and antioxidant activities against ferric-ion, ABTS and DPPH radicals, the perfect anti-inflammatory activity of TSE was demonstrated by significantly reducing the content of NO and the phagocytic activity in LPS induced RAW 264.7 cells, which provided a theoretical basis for the research and development of new anti-inflammatory Chinese medicine.  相似文献   

10.
Shexiang Xintongning tablet (SXXTN) is a traditional Chinese medicine (TCM) preparation for the treatment of coronary heart disease (CHD) angina pectoris. However, due to the complexity of the compounds in SXXTN, the active chemical components responsible for the therapeutic effect are still ambiguous. The purpose of our study was to characterize the chemical profile of SXXTN and quantify the representative chemicals. The high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-QTOF MS) method and gas chromatograph coupled with mass spectrometry (GC–MS) method were utilized to identify the chemical constituents of SXXTN. A total of 140 compounds including alkaloids, ginsenosides, organic acids, esters, triterpenes, phthalides and amino acid were identified in accordance with their retention times, accurate masses and characteristic MS/MS fragment patterns. Forty-four volatile components were characterized by GC–MS through NIST database matching. In the further research of quantitative analysis, 40 non-volatile compounds and 17 volatile compounds were determined and successfully applied for detecting in 7 batches of SXXTN samples by high performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HPLC-QQQ MS) and gas chromatograph coupled with triple-quadrupole tandem mass spectrometry (GC-QQQ MS) in multiple reaction monitoring (MRM) mode, respectively. The quantitative methods were verified in linearity, precision, repeatability stability and recovery. The above results indicated that the established method was practical and reliable for synthetical quality evaluation of SXXTN. In addition, our study might supplement the chemical evidence for disclosing the material basis of its therapeutic effects.  相似文献   

11.
《Arabian Journal of Chemistry》2020,13(12):8848-8887
Phthalocyanine (Pc) complexes are an important class of dyes with numerous (e.g., biological, photophysical, and analytical) applications. Among the methods used to improve the properties of these complexes, one should mention the introduction of different substituents, variation of the central metal ion, ligand exchange, and conjugation to nanomaterials (e.g., carbon-based nanomaterials and metal nanoparticles (NPs)). This work briefly reviews Pc complex conjugation to Ag and Au NPs, highlights the different NP shapes, and discusses the diversity of conjugation approaches. Moreover, the use of UV–Vis spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering and Fourier transform infrared spectroscopy to characterize Pc-NP hybrids is summarized. The effect of conjugation on Pc photo-physicochemical properties (fluorescence, singlet oxygen generation, triplet state formation, and optical limiting behavior) is discussed, and future perspectives for the synthesis and applications of new hybrids are provided.  相似文献   

12.
Huge plastic consumption and depletion of fossil fuels are at the top of the world's environmental and energy challenges. The scientific community has tackled these issues through different approaches. Catalytic pyrolysis of plastic wastes to valuable products has been proved as a sustainable route which fits with the circular economy aspects. The design of catalytic materials is the central factor for performing the catalytic conversion of plastic wastes. This review aims to conduct a Bibliometric analysis of the pyrolysis of plastic wastes and non-precious-based catalysts by mapping research studies over the last fifty years. The analysis was developed via VOSviewer and RStudio tools. It showed the historical progress regarding plastic waste pyrolysis to produce valuable products and chemicals worldwide. The research shows that the top five countries with the highest citations and publications in this field were Spain, China, England, the USA and India. The Journal of Analytical and Applied Pyrolysis had the most comprehensive coverage of plastic waste. The relationship between the catalyst and the mechanism of plastic waste can influence the production yield and selectivity. The research gap and underrepresented research topics were identified, and previous research studies on developing non-precious-based catalysts that were most relevant to the current topic were reviewed and discussed. The challenges and perspectives on catalyst preparation and development for material complexity were critically discussed. Challenges of previous studies and directions for future research were provided. This report might guide the reader to take a general look at plastic waste valorization by pyrolysis and easily understand the main challenges.  相似文献   

13.
The pitangueira (Eugenia uniflora) is a tree native to Brazil but is cultivated in several subtropical countries. A great diversity of nutrients and bioactive compounds have been found in the leaves and fruits of E. uniflora, which supports its use in folk medicine to treat diseases such as stomach and intestinal disorders, fever and general inflammation. Antimicrobial, antiviral, antifungal and antioxidant effects on metabolism have been reported for this plant. This review discusses the phytochemical profile, toxicity and pharmacological action of E. uniflora leaves and fruits and points out that gaps in the literature that need to be investigated further. This review also discusses studies developed with E. uniflora demonstrating its promising therapeutic potential for several diseases with an apparent low toxicity in mammals. The compilation of the main pharmacological and toxicological results, as well as the phytochemical characterization of the varieties and constituents of E. uniflora are general aspects that this review attempts to demonstrate in order to contribute to the new approaches and developments to plant-derived natural product drug discovery. However, further studies are required to establish the nutraceutical effects and uses of E. uniflora as an important and safe supplement for human health.  相似文献   

14.
Alzheimer's disease (AD) is a latent and progressive neurodegenerative disease. Schisandra chinensis(Turcz.)Baill - Acorus tatarinowii Schott (Sc-At) are effective in treating neurological disorders.Purpose of this study is to explore the mechanism of Sc-At in AD treatment. First, untargeted ultra-performance liquid chromatography quadrupole-time of flight/mass spectrometer (UPLC-QTOF/MS) metabolomics was employed to detect the rat brain metabolism. Then, network pharmacology was used to determine the potential anti-AD targets. Bioinformatics, and molecular docking were conducted for further analysis. A MetScape study examined the association between differential metabolites and potential targets. Finally, the targeted ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) metabolomics and the potential protein activity studies were carried out to elucidate the mechanisms. The results showed that Sc-At improved the neuronal cell alignment disorder in hippocampal CA1 region of AD rats. In brain metabolomics, 30 differential metabolites were screened in the study model versus blank group. The network pharmacology analyzed 54 targets of Sc-At anti-AD where, 14 were correlated with amyloid β-protein (Aβ). Aromatase was selected as an important hub target having the best binding power in molecular docking simulation predictions and also correlated with Aβ. Further tests showed that the brain aromatase activity, and the downstream product 17β-Estradiol levels were elevated in AD rats treated with Sc-At. This work may provide new perspectives for the pharmacological effects and the action mechanisms of natural compounds extracts in treating AD progression.  相似文献   

15.
With globally increased human population and industrialization, the natural sources of water are reduced and then contaminated. Therefore, development of advanced technologies for the efficient water treatment is becoming of the scope of each of the nation. One of the cost-effective and well-known technologies for wastewater treatment is adsorption of contaminants by natural biopolymer like chitosan (CS) due to its unique features such as availability, biodegradability, biocompatibility, eco-friendly and low-cost production. However, Cs suffers considerable limitations such as low adsorption capacity, low surface area and limited reusability. Thence, this review intended to provide an overview for recent advances of chitosan-based adsorbents that established better adsorption activities towards various hazard heavy metals, including: As(III), As(V), Cu(II), Cr(VI), Pb(II) and Cd(II) ions. In addition, the capabilities of chitosan-based adsorbents for the adsorptive removal of anions including phosphates and nitrates were discussed. Besides, the suggested adsorption mechanisms of these contaminants onto chitosan-based adsorbents and the research conclusions for the optimum conditions of the adsorption processes were explained in light of the currently reported studies. Furthermore, to emphasize the foremost research gaps and future potential trends that could inspire further researchers to find out the best solutions for water treatment problems.  相似文献   

16.
17.
While the developments of additive manufacturing (AM) techniques have been remarkable thus far, they are still significantly limited by the range of printable, functional material systems that meet the requirements of a broad range of industries; including the health care, manufacturing, packaging, aerospace, and automotive industries. Furthermore, with the rising demand for sustainable developments, this review broadly gives the reader a good overview of existing AM techniques; with more focus on the extrusion-based technologies (fused deposition modeling and direct ink writing) due to their scalability, cost efficiency and wider range of material processability. It then goes on to identify the innovative materials and recent research activities that may support the sustainable development of extrusion-based techniques for functional and multifunctional (4D printing) part and product fabrication.  相似文献   

18.
Psidium guajava L., commonly known as guava is an important tropical food plant with diverse medicinal values. In traditional medicine, it is used in the treatment of various diseases such as diarrhoea, diabetes, rheumatism, ulcers, malaria, cough, and bacterial infections. The aim of this review is to provide up-to-date information on the ethnomedicinal uses, bioactive compounds, and pharmacological activities of P. guajava with greater emphasis on its therapeutic potentials. The bioactive constituents extracted from P. guajava include phytochemicals (gallic acid, casuariin, catechin, chlorogenic acid, rutin, vanillic acid, quercetin, syringic acid, kaempferol, apigenin, cinnamic acid, luteolin, quercetin-3-O-α-L-arabinopyranoside, morin, ellagic acid, guaijaverin, pedunculoside, asiastic acid, ursolic acid, oleanolic acid, methyl gallate and epicatechin) and essential oils (limonene, trans-caryophyllene, α-humulene, γ-muurolene, selinene, caryophyllene oxide, bisabolol, isocaryophyllene, δ-cadinene, α-copaene, α-cedrene, β-eudesmol, α-pinene, β-pinene, β-myrcene, linalool, α-terpineol and eucalyptol). In vitro and in vivo studies demonstrated that P. guajava possesses pharmacological activities such as antidiabetic, antidiarrhoeal, hepatoprotective, anticancer, antioxidant, anti-inflammatory, antiestrogenic, and antibacterial activities which support its traditional uses. The exhibited pharmacological activities reported may be attributed to the numerous bioactive compounds present in different parts of P. guajava. Based on the beneficial effects of P. guajava as well as its bioactive constituents, it can be exploited in the development of pharmaceutical products and functional foods. However, there is a need for comprehensive studies in clinical trials to establish the safe doses and efficacy of P. guajava for the treatment of several diseases.  相似文献   

19.
This review critically evaluates the plastic accumulation challenges and their environmental (primarily) and human (secondarily) impacts. It also emphasizes on their degradation and fragmentation phenomena under marine conditions. In addition, it takes into account the leachability of the various chemical substances (additives) embedded in plastic products to improve their polymeric properties and extend their life. Regardless of their effectiveness in enhancing the polymeric function of plastic products, these additives can potentially contaminate air, soil, food, and water. Several findings have shown that, regardless of their types and sizes, plastics can be degraded and/or fragmented under marine conditions. Therefore, the estimation of fragmentation and degradation rates via a reliable developed model is required to better understand the marine environmental status. The main parameter, which is responsible for initiating the fragmentation of plastics, is sunlight/UV radiation. Yet, UV- radiation alone is not enough to fragment some plastic polymer types under marine conditions, additional factors are needed such as mechanical abrasion. It should be also mentioned that most current studies on plastic degradation and fragmentation centered on the primary stages of degradation. Thus, further studies are needed to better understand these phenomena and to identify their fate and environmental effects.  相似文献   

20.
Vitellaria paradoxa Gaertn. is a multipurpose medicinal plant of the family Sapotaceae, and it has been widely used usually in the clinical traditional medicine as remedy for a wide range of diseases for several decades. In addition, the plant has also found applications in confectionery, cosmetics and soaps, and pharmaceuticals both locally and internationally. V. paradoxa, which has been identified with >150 phytoconstituents, is rich in oleanane-type triterpene acids and glycosides, such as paradoxosides A-E, tieghemelin A, parkiosides A-C, bassic acid, as well as flavonoids such as quercetin and catechin-type compounds. The extracts and the active constituents of V. paradoxa have been investigated for various pharmacological activities, including but not limited to anticancer, melanogenesis-inhibitory, antibacterial, anti-diabetic, antioxidant, anti-inflammatory, anti-diarrhoeal, and antifungal activities. Additionally, V. paradoxa has also been utilized in nanoparticles (NPs) synthesis. These NPs among other things have shown significant antinociceptive and antiedematogenic activities as well as environmental friendly adsorptive properties for the removal of pollutants from pharmaceutical effluents. Overall, this review comprehensively examines the traditional uses, phytochemistry, pharmacology, toxicology, clinical studies, and nanoparticles synthesized from V. paradoxa and their applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号