首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A series of five heterogeneous network polymers was prepared from poly(D -glutamic acid) (PDG) and poly(oxyethylene glycol) (PEG), and their dynamic mechanical properties were studied. The content of PDG was fixed at 60% by weight, and the molecular weight of PEG was changed to obtain networks with various crosslink densities. An increase in the PEG molecular weight from 330 to 880 caused considerable broadening of tan δ and E″ curves, and peak temperatures for tan δ and E″ decreased slightly. Curves of tan δ and E″ for PDG–PEG 4000 (indicating a PEG component of molecular weight 4,000) were much broader and the existence of two peaks was recognized. These findings and x-ray photographs suggest that PDG–PEG 330, 570, and 880 give films of fairly uniform phase, but that PDG–PEG 1830 and 4000 give films with two-phase structure. The factors influencing the dynamic mechanical properties in decreasing order of effectiveness are found to be the proportions by weight of PDG and PEG, the compatibility of PDG with PEG, the crosslink density, and the concentration of free carboxyl groups. The infrared spectra of these polymers indicate that at least part of the PDG component retains the α-helix conformation.  相似文献   

2.
Comb‐like amphiphilic poly(poly((lactic acid‐co‐glycolic acid)‐block‐poly(ethylene glycol)) methacrylate (poly((PLGA‐b‐PEG)MA)) copolymers were synthesized by radical polymerization. (PLGA‐b‐PEG)MA macromonomer was prepared by ring‐opening bulk polymerization of DL ‐lactide and glycolide using purified poly(ethylene glycol) monomethacrylate (PEGMA) as an initiator. (PLGA‐b‐PEG)MA macromonomer was copolymerized with PEGMA and/or acrylic acid (AA) by radical polymerization to produce comb‐like amphiphilic block copolymers. The molecular weight and chemical structure were investigated by GPC and 1H NMR. Poly((PLGA‐b‐PEG)MA) copolymer aqueous solutions showed gel–sol transition behavior with increasing temperature, and gel‐to‐sol transition temperature decreased as the compositions of the hydrophilic PEGMA and AA increased. The gel‐to‐sol transition temperature of the terpolymers of the poly((PLGA‐b‐PEG)MA‐co‐PEGMA‐co‐AA) also decreased when the pH was increased. The effective micelle diameter obtained from dynamic light scattering increased with increasing temperature and with increasing pH. The critical micelle concentration increased as the composition of the hydrophilic monomer component, PEGMA and AA, were increased. The spherical shape of the hyperbranched polymers in aqueous environment was observed by atomic force microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1954–1963, 2008  相似文献   

3.
Epoxide and aldehyde end‐functionalized poly(ethylene glycol)s (PEGs) (Mw = 400, 1000, 3400, 5000, and 20,000) were grafted to poly(ethylene terephthalate) (PET) film substrates that contained amine or alcohol groups. PET‐PAH and PET‐PEI were prepared by reacting poly(allylamine) (PAH) and polyethylenimine (PEI) with PET substrates, respectively; PET‐PVOH was prepared by the adsorption of poly(vinyl alcohol) (PVOH) to PET substrates. Grafting was characterized and quantified by the increase of the intensity of the PEG carbon peak in the X‐ray photoelectron spectra. Grafting yield was optimized by controlling reaction parameters and was found to be substrate‐independent in general. Graft density consistently decreased as PEG chain length was increased. This is likely due to the higher steric requirement of higher molecular weight PEG molecules. Water contact angles of surfaces containing long PEG chains (3400, 5000, and 20,000) are much lower than those containing shorter PEG chains (400 and 1000). This indicates that longer PEG chains are more effective in rendering surfaces hydrophilic. Protein adsorption experiments were carried out on PET‐ and PEG‐modified derivatives using collagen, lysozyme, and albumin. After PEG grafting, the amount of protein adsorbed was reduced in all cases. Trends in surface requirements for protein resistance are: surfaces with longer PEG chains and higher chain density, especially the former, are more protein resistant; PEG grafted to surfaces containing branched or network polymers is not effective at covering the underlying substrate, and thus does not protect the entire surface from protein adsorption; and substrates containing surface charge are less protein‐resistant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5389–5400, 2004  相似文献   

4.
Graft copolymers consisting of amorphous main chain, poly(methyl methacrylate) (PMMA), or poly(methyl acrylate) (PMAc), and crystalline side chains, poly(ethylene glycol) (PEG), have been prepared by copolymerization of PEG macromonomers with methyl methacrylate or methyl acrylate (MMAx or MACx, respectively). Because of the compatibility of PMMA/PEG and PMAc/PEG, from small‐angle X‐ray scattering results, the main and side chains in graft copolymers were suggested to be homogeneous in the molten state. Differential scanning calorimetry (DSC) cooling scans revealed that PEG side chains for graft copolymers with large PEG fractions were crystallized when the sample was cooled, with a cooling rate of 10 °C/min. The spherulite pattern observed by a polarized optical microscope suggested the growth of PEG crystalline lamellae. Crystallization of PEG in MMAx was more restrained than in MACx. From these results, we have concluded that the crystallization behavior of the grafted side chains is strongly influenced by the glass transition of a homogeneously molten sample as well as dilution of the crystallizable chains. Domain spacings for isothermally crystallized graft copolymers were described by interdigitating chain packing in crystalline–amorphous lamellar structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 79–86, 2005  相似文献   

5.
An ABC type miktoarm star copolymer possessing polystyrene (PS), poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) arms was synthesized by combining Atom Transfer Radical Polymerization (ATRP) and Ring Opening Polymerization (ROP) with two click chemistries, namely thiol–ene and copper catalyzed azide–alkyne cycloaddition (CuAAC). For this purpose, a core 1-(allyloxy)-3-azidopropan-2-ol with allyl and azide functionalities was synthesized in two steps. Then, clickable polymers, polystyrene with thiol functionality (PS–SH) and poly(ethylene glycol) with alkyne functionality (PEG–acetylene) were independently prepared. As the first step of the grafting onto process, PS–SH was thiol–ene clicked onto the core to yield PS–N3–OH. The second arm was then incorporated onto the core by the Ring Opening Polymerization (ROP) of l-(?)-Lactide (LA) using as PS–N3–OH initiator and tin(II) 2-ethylhexanoate as catalyst. Finally, alkyne–PEG–acetylene was bonded to the resulting PLA–PS–N3 using CuAAC click reaction. All intermediates, related polymers at different stages and final PS–PLA–PEG miktoarm star copolymer were characterized by 1H NMR, FT-IR, SEC and DP-MS analyses. Direct pyrolysis mass spectrometry, (DP-MS) analyses of PS–PLA–PEG and all intermediate polymers indicated that the decomposition of PS and PEG chains occurred almost independently, following the degradation mechanisms of the corresponding homopolymers. On the other hand, during the pyrolysis of PS–PLA–PEG, elimination of H2O during the decomposition of PEG chains at the early stages of pyrolysis caused hydrolysis of PLA chains and increased the yields of CO2, CO and units involving unsaturation and/or crosslinked structure.  相似文献   

6.
A series of poly(itaconate ester)s containing methyl-terminated poly(ethylene oxide) side chains with lengths ranging from 1 to 5 ethylene oxide units has been synthesized. Both heat capacity Cp and dynamic mechanical measurements have been carried out on these polymers using differential scanning calorimetry (DSC) and torsional braid analysis (TBA), respectively. The resulting data for this polymer series are discussed, and comparisons are made with work previously published for the corresponding di-n-alkyl itaconate ester polymers where appropriate.  相似文献   

7.
The effects of comb‐like amphiphilic block copolymer architectures on the physical properties such as sol‐gel transition and micellization behaviors with the change of temperature and pH were examined. Comb‐like poly((poly(ethylene glycol)‐b‐(poly(lactic acid‐co‐glycolic acid))acrylate‐co‐acrylic acid) (poly((PEG‐b‐PLGA)A‐co‐AA)) copolymers were synthesized by coupling of poly(acrylic acid) (PAA) with two different kinds of PEG‐b‐PLGA diblock copolymers to investigate the effects of the number of branches and hydrophilicity/hydrophobicity on the sol‐gel transition and micellization. The molecular weights and chemical structures were confirmed by GPC and 1H NMR. The number of PEG‐b‐PLGA branches was gradually deviated from the feed molar ratio with increasing the molecular weight and the number of branches and due to the bulkiness of PEG‐b‐PLGA. Poly[(PEG‐b‐PLGA)A‐co‐AA] aqueous solutions showed thermosensitive sol‐gel transition behavior, and the gelation took place at lower concentration with increasing the number of branches and PLGA chain length due to the increase of hydrophobicity. The temperature, at which abrupt increase of viscosity by dynamic rheometer appeared, was also in good agreement with sol‐gel transition by tube‐titling method. The CMC, calculated from UV‐Visible spectroscopy using DPH as hydrophobic dye, also decreased with increasing the number of PEG‐b‐PLGA branches and PLGA chain length with same reason. The micelle size was increased with increasing temperature at the initial stage, however, decreased with further increase of temperature, since the micelles were, first, aggregated by hydrophobic intermolecular interaction, and then fragmented by dehydration of PEG segments with increasing temperature. PH‐sensitive PAA backbone played a key role in physical properties. With decreasing pH, sol‐to‐gel transition temperature, CMC values, and micelle size were decreased because of the increase of hydrophobicity resulting form non‐ionized acrylic acid. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1287–1297, 2010  相似文献   

8.
A novel synthesis of poly(ethylene glycol) (PEG)-grafted poly(urethanes) (PURs) is described based on a precursor PUR containing free amino groups in the main chain. Three different poly(urethane) backbones were prepared: a homopoly(urethane) comprised of N-Bocdiethanolamine (BDA) and 4,4′-methylenebis(phenyl isocyanate) (MDI), a copoly(urethane) (COPUR) consisting of BDA, N-benzyldiethanolamine and MDI, and a poly(urethane urea) (PUU) that was prepared from BDA, MDI, and ethylenediamine as the chain extender. The Mn of these poly(urethanes) ranged from 32,000 to 72,000 g/mol. PEG (750, 1,900, and 5,000 g/mol) was grafted onto the boc-deprotected poly(urethanes) via the chloroformate. Films of the polymers were spin cast from dilute solutions, annealed, and the surfaces analyzed by goniometry. Water contact angle data indicates increasing PEG surface coverage of the poly(urethanes) with increasing PEG molecular weight. Reorientation of the polymer films is evidenced by contact angle hysteresis. Polymer thrombogenicity, which was studied using blood perfusion experiments, shows that COPUR-g-PEG5000 and PUU-g-PEG5000 exhibit very little platelet adhesion. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3441–3448, 1999  相似文献   

9.
A series of multihydroxyl (2, 4, and 8) terminated poly(ethylene glycol)s and their biodegradable, biocompatible, and branched barbell‐like (PLGA)nb‐PEG‐b‐(PLGA)n (n = 1, 2, 4) copolymers have been synthesized. The lengths of the PLGA arms were varied by controlling the molar ratio of monomers to hydroxyl groups of PEG ([LA+GA]0/[? OH]0 = 23, 45, 90). Chemical structures of synthesized barbell‐like copolymers were confirmed by both 1H and 13C‐NMR spectroscopies. Molecular weights were determined by 1H‐NMR end‐group analysis and gel permeation chromatography. The result of hydrolytic degradation indicated that the rate of degradation increased with the increase of arm numbers or with the decrease of arm lengths. The thermal properties were evaluated by using differential scanning calorimetry and a thermogravimetric analysis. The results indicated that the thermal properties of barbell‐like copolymers depended on the structural variations. The morphology of (PLGA)n‐PEG‐(PLGA)n copolymers self‐assembly films were investigated by atomic force microscope, the results indicated that the microphase separation existed in (PLGA)n‐PEG‐(PLGA)n copolymers. Because of the favorable biodegradability and biocompatibility of the PLGA and PEG, these results may therefore create new possibilities for these novel structural amphiphilic barbell‐like copolymers as potential biomaterials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3802–3812, 2008  相似文献   

10.
A series of novel biodegradable hydrogels were designed and synthesized from four types of unsaturated poly(ester amide) (UPEA) and poly(ethylene glycol) diacrylate (PEG‐DA) precursors by UV photocrosslinking. These newly synthesized biodegradable UPEA/PEG‐DA hydrogels were characterized by their gel fraction (Gf), equilibrium swelling ratio (Qeq), compressive modulus, and interior morphology. The effect of the precursor feed ratio (UPEAs to PEG‐DA) on the properties of the hydrogels was also studied. The incorporation of UPEA polymers into the PEG‐DA hydrogels increased their hydrophobicity, crosslinking density (denser network), and mechanical strength (higher compressive modulus) but reduced Qeq. When different types of UPEA precursors were coupled with PEG‐DA at the same feed ratio (20 wt %), the resulting hydrogels had similar Qeq values and porous three‐dimensional interior morphologies but different Gf and compressive modulus values. These differences in the hydrogel properties were correlated to the chemical structures of the UPEA precursors; that is, the different locations of the >C?C< double bonds in individual UPEA segments resulted in their different reactivities toward PEG‐DA to form hydrogels. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3932–3944, 2005  相似文献   

11.
New degradable poly(ether‐anhydride) networks were synthesized by UV photopolymerization. Dicarboxylated poly(ethylene glycol) (PEG) or poly(tetramethylene glycol) (PTMG) was reacted with an excess of methacrylic anhydride to form dimethacrylated macromers containing anhydride linkages. The percent of conversion for the macromer formation was more than 80% at 60 °C after 24 h. 1H NMR and IR spectroscopies show the presence of anhydride linkages in the macromer. In vitro degradation studies were carried out at 37 °C in PBS with crosslinked polymer networks formed by UV irradiation. All PEG‐based polymers degraded within 2 days, while PTMG‐based polymers degraded by 50% of the initial weight after 14 days. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1277–1282, 2000  相似文献   

12.
Phase equilibrium studies for semiconcentrated solutions of rodlike poly(γ‐benzyl L ‐glutamate) having oligo(ethylene glycol) as side chains (PBLG‐g‐OEG) have been investigated. The phase‐boundary concentrations in isotropic and anisotropic phases for N,N‐dimethylformamide (DMF) solution of PBLG‐g‐OEG with short side chains (PBLG2‐g‐380) are higher than those for solution of PBLG‐g‐OEG with long side chains (PBLG2‐g‐770). The lattice theory and the scaled particle theory for nematic solution, which don't distinguish the molecular architecture of the rodlike polymer, cannot explain this experimental result. Repulsive interaction between rodlike polymers by means of the attached side chains is proposed for the molecular orientation of PBLG‐g‐OEG in anisotropic state in order to describe the experimental result. Ternary phase diagrams of PBLG‐g‐OEG/poly(ethylene glycol) (PEG)/DMF show that the miscibility of rodlike PBLG‐g‐OEG and coiled PEG is most enhanced in the system of PBLG2‐g‐770, which has longest and largest amount of side chains. This experimental observation is explained by using the calculation based on the lattice theory and the repulsive interaction of side chains proposed above. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1331–1340, 2000  相似文献   

13.
The synthesis and characterization of novel tricomponent networks consisting of well‐defined poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) strands crosslinked and reinforced by poly(pentamethylcyclopentasiloxane) (PD5) domains are described. Network synthesis occurred by dissolving α,ω‐diallyl PEG and α,ω‐divinyl PDMS prepolymers in a common solvent (toluene), introducing a stoichiometric excess of pentamethylcyclopentasiloxane (D5H) to the charge, inducing the cohydrosilation of the prepolymers by Karstedt's catalyst and completing network formation by the addition of water. Water in the presence of the Pt‐based catalyst oxidizes the SiH groups of D5H to SiOH functions that immediately polycondense and bring about crosslinking. The progress of cohydrosilation and polycondensation was followed by monitoring the disappearance of the SiH and SiOH functions by Fourier transform infrared spectroscopy. Because cohydrosilation and polycondensation are essentially quantitative, overall network composition can be controlled by calculating the stoichiometry of the three network constituents. The very low quantities of extractable (sol) fractions corroborate efficient crosslinking. The networks swell in both water and hexanes. Differential scanning calorimetry showed three thermal transitions assigned, respectively, to PEG (melting temperature: 46–60 °C depending on composition), PDMS [glass‐transition temperature (Tg) = ~?121 °C], and PD5 (Tg = ~?159 °C) and indicated a phase‐separated tricomponent nanoarchitecture. The low Tg of the PD5 phase is unprecedented. The strength and elongation of PEG/PD5/PDMS networks can be controlled by overall network composition. The synthesis of networks exhibiting sufficient mechanical properties (tensile stress: 2–5 MPa, elongation: 100–800%) for various possible applications has been demonstrated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3093–3102, 2002  相似文献   

14.
Miscibility enhancement of ionomer/ionomer and ionomer/polymeric acid systems is studied on the polymer pairs of poly(styrene-co-tetramethyl ammonium styrenesulfonate)/poly(ethyl acrylate-co-N-methyl-4-vinylpyridinium iodide) and poly(styrene-co-styrenesulfonic acid)/poly(ethyl acrylate-co-N-methyl-4-vinylpyridinium iodide). NMR and dynamic mechanical results show that in these blends direct macroion–macroion interaction can be achieved with the elimination of microcounterions from the polymer chains. Ion-ion attraction leads to a miscibility enhancement comparable to that of the previously reported proton transfer blends; a miscible blend is obtained with ca. 5 mol% of ions in the polymers.  相似文献   

15.
 The behaviour of hydrophobically modified poly(allylammonium) chloride having octyl, decyl, dodecyl and hexadecyl side chains has been studied in aqueous solution using fluorescence emission techniques. Micropolarity studies using the I 1/I 3 ratio of the vibronic bands of pyrene show that the formation of hydrophobic microdomains depends on both the length of the side chain and the polymer concentration. The I 1/I 3 ratio of the polymers with low hydrophobe content (less than 5% mol) changes substantially when reaching a certain concentration. These changes are assigned to aggregation originating from interchain interactions. This behaviour is also confirmed by the behaviour of the monomer/excimer emission intensities of pyrenedodecanoic acid used as a probe. For polymers having dodecyl side chains and hydrophobe contents higher than 10%, aggregates are formed independently of the polymer concentration. Anisotropy measurements show that microdomains resulting from the inter- and/or intramolecular interactions are similar to those observed for cationic surfactants. Viscosity measurements show that the coil dimensions are substantially decreased for the polymers having high hydrophobe contents, indicating intramolecular associations. Received: 10 November 1999/Accepted: 7 April 2000  相似文献   

16.
We report a novel approach for fabrication of multifunctional conjugated polymers, namely poly(p‐phenylene)s (PPPs) possessing polypeptide (poly‐l ‐lysine, PLL) and hydrophilic poly(ethylene glycol) (PEG) side chains. The approach is comprised of the combination of Suzuki coupling and in situ N‐carboxyanhydride (NCA) ring‐opening polymerization (ROP) processes. First, polypeptide macromonomer was prepared by ROP of the corresponding NCA precursor using (2,5‐dibromophenyl)methanamine as an initiator. Suzuki coupling reaction of the obtained polypeptide and PEG macromonomers both having dibromobenzene end functionality using 1,4‐benzenediboronic acid as the coupling partner in the presence of palladium catalyst gave the desired polymer. A different sequence of the same procedure was also employed to yield polymer with essentially identical structure. In the reverse sequence mode, low molar mass monomer (2,5‐dibromophenyl)methanamine, and PEG macromonomer were coupled with 1,4‐benzenediboronic acid in a similar way followed by ROP of the L‐Lysine NCA precursor through the primary amino groups of the resulting polyphenylene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1785–1793  相似文献   

17.
Environmental switches may be fabricated for the controlled release of pharmaceutical drug using a thermally responsive polymer with the intrinsic chemical and physical nature of stimuli‐sensitive smart materials. Particularly, much attention has been paid to the biomedical applications of poly(N‐isopropyl acrylamide) (PNIPAAm) because of its unique reversible transition at a specific lower critical solution temperature (LCST).Thermally sensitive block copolymers, poly(N‐isopropyl acrylamide‐b‐poly(L ‐lactide‐co‐glycolide) (PNIPAAm‐b‐PLGA), and polyethylene glycol‐poly (lactide‐co‐glycolide) (PEG‐PLGA) triblock copolymers with different compositions and length of PLGA block were synthesized via ring‐opening polymerization of lactide and glycolide in the presence of OH‐terminated PNIPAAm or PEG. The composition and structure of the polymer were determined by NMR and FTIR. The effect of important factors, such as ionic strength, pH, and polymer concentration on the phase transition behavior of temperature‐sensitive polymers, were investigated by cloud point measurements. The resulting thermosensitive polymers were used for the entrapment of a narcotic antagonist drug, naltrexone, as the model drug. The loading efficiency and drug release behavior of naltrexone‐loaded hydrogels were investigated. The naltrexone loaded thermosensitive polymers were able to sustain the release of naltrexone for different periods of time, depending on the polymer composition, and concentration. In vitro release studies showed that these thermosensitive polymers are able to deliver naltrexone in biologically active forms at a controlled rate for 3–8 weeks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic biodegradable polyesters have been reported as thermogelling polymers, because they feature temperature-dependent sol-to-gel or gel-to-sol transitions in aqueous solutions. In this study, a series of thermogelling poly(ethylene glycol methyl ether)-block–poly(cyclohexylenedimethylene adipate)-block–poly(ethylene glycol methyl ether) triblock copolymers and PEG-block–poly(cyclohexylenedimethylene adipate) multiblock copolymers was synthesized by reacting hydroxyl-terminated poly(cyclohexylenedimethylene adipate) (PCA) with poly(ethylene glycol methyl ether) and PEG, respectively, using 1,6-diisocyanatohexane as the coupling agent. Two hydroxyl-terminated PCAs, i.e., poly(1,4-cyclohexylenedimethylene adipate) and poly(1,3/1,4-cyclohexylenedimethylene adipate), were synthesized by the condensation reaction of adipic acid (AA) with 1,4-cyclohexanedimethanol (CHDM) and 1,3/1,4-CHDM, respectively, and used as the hydrophobic polyester blocks of these thermogelling copolymers to compare the effect of crystallinity on the sol-to-gel transition behavior.The polymers were characterized using proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, solubility testing, and rheological analysis. Experimental results revealed that the structure of the PCA block (crystalline vs. amorphous), the molecular weights of the hydrophobic PCA and hydrophilic PEG blocks, and the type of thermogelling polymer (triblock vs. multiblock) influenced the solubility, polymer micelle packing characteristics, maximum storage modulus, and sol-to-gel temperature of the polymers. Among all the samples at 40 wt.% aqueous solutions, triblock copolymer TB3 showed sol-to-gel temperature at 22 °C, and had the highest maximum storage modulus about 170 Pa.  相似文献   

19.
ABA block copolymers of polylactide and poly(ethylene glycol) as amphiphilic bioabsorbable polymers were synthesized by the ring-opening polymerization of dl- lactide onto poly(ethylene glycol) (PEG 2000 or PEG 6000) and their structures were characterized on the basis of proton NMR. Biodegradable nanocapsules of an aqueous insulin solution were prepared from the block copolymers and polylactide by an improved interfacial coacervation technique. The results showed that the diameters of the nanocapsules were mainly dependent on the ratio of the two chains in the block polymers. The size of the nanocapsules decreased with an increase in the amount of surfactant used. More insulin solution resulted in an enlargement of the nanocapsules in diameter. In an optimum condition, biodegradable nanocapsules could be achieved with a size around 250 nm with a narrow distribution. The encapsulation percentages of insulin were larger in the nanocapsules from the PEG 2000 copolymers than in those from the PEG 6000 analogs and changed with the ratios of the blocks in the block copolymers. Received: 17 July 2000 Accepted: 24 November 2000  相似文献   

20.
Core‐shell structured nanoparticles of poly(ethylene glycol) (PEG)/polypeptide/poly(D ,L ‐lactide) (PLA) copolymers were prepared and their properties were investigated. The copolymers had a poly(L ‐serine) or poly(L ‐phenylalanine) block as a linker between a hydrophilic PEG and a hydrophobic PLA unit. They formed core‐shell structured nanoparticles, where the polypeptide block resided at the interface between a hydrophilic PEG shell and a hydrophobic PLA core. In the synthesis, poly(ethylene glycol)‐b‐poly(L ‐serine) (PEG‐PSER) was prepared by ring opening polymerization of N‐carboxyanhydride of O‐(tert‐butyl)‐L ‐serine and subsequent removal of tert‐butyl groups. Poly(ethylene glycol)‐b‐poly(L ‐phenylalanine) (PEG‐PPA) was obtained by ring opening polymerization of N‐carboxyanhydride of L ‐phenylalanine. Methoxy‐poly(ethylene glycol)‐amine with a MW of 5000 was used as an initiator for both polymerizations. The polymerization of D ,L ‐lactide by initiation with PEG‐PSER and PEG‐PPA produced a comb‐like copolymer, poly(ethylene glycol)‐b‐[poly(L ‐serine)‐g‐poly(D ,L ‐lactide)] (PEG‐PSER‐PLA) and a linear copolymer, poly(ethylene glycol)‐b‐poly(L ‐phenylalanine)‐b‐poly(D ,L ‐lactide) (PEG‐PPA‐PLA), respectively. The nanoparticles obtained from PEG‐PPA‐PLA showed a negative zeta potential value of ?16.6 mV, while those of PEG‐PSER‐PLA exhibited a positive value of about 19.3 mV. In pH 7.0 phosphate buffer solution at 36 °C, the nanoparticles of PEG/polypeptide/PLA copolymers showed much better stability than those of a linear PEG‐PLA copolymer having a comparable molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号