首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用L-苯丙氨酸乙酯(L-Phe)改性透明质酸(HA)双亲性生物大分子(HA-Phe)负载生物活性分子木瓜蛋白酶(papain),HA-Phe和Papain通过静电、氢键和疏水相互作用自组装形成生物基Papain/HA-Phe复合纳米粒子.用动态光散射(DLS)和透射电镜(TEM)对复合纳米粒子的尺寸和形貌进行表征.结果显示,形成的复合纳米粒子为球形结构,粒径约308 nm.以此复合纳米粒子为颗粒乳化剂稳定白油,形成水包油型Pickering乳液.乳液的扫描电镜(SEM)显示,复合纳米粒子吸附在油水界面,形成复合纳米粒子的吸附层以稳定乳液.详细研究了pH和盐浓度对复合纳米粒子性质和复合纳米粒子乳化性能的影响.结果表明,随着pH增加,复合纳米粒子在油滴表面的吸附数目减少,乳化性能降低;随着盐浓度增加,复合纳米粒子的形变能力增强,乳化性能提高.进一步研究了乳液中木瓜蛋白酶的活性及美白效果.研究表明,制备的乳液保留了一定的活性,且具有一定的美白效果.  相似文献   

2.
采用共沉淀法制备了3种形态的MgAl双金属氢氧化物颗粒的水分散体系, 并以其为乳化剂制备了Pickering乳液. 比较了3种颗粒的分散体系及其稳定的Pickering乳液的性质. X射线衍射(XRD)和透射电子显微镜(TEM)表征结果表明, 低结晶度的颗粒以形状不规则、 结构疏松、 表面粗糙的絮状体形式分散于水中, 且颗粒尺寸随高速搅拌分散时间的延长而减小; 而良好结晶的颗粒以形状规则、 结构致密、 表面平滑的六角片存在于水中. Zeta电位测试表明, 3种颗粒在水中均带正电荷, NaCl可降低颗粒的Zeta电位而使其发生絮凝, 但良好结晶颗粒的分散体系在更高NaCl浓度时才出现明显沉淀. 分别采用3种双金属氢氧化物颗粒/NaCl水分散体系制备了水包油(O/W)型Pickering乳液, 并比较了乳液的稳定性. 结果表明, NaCl的引入在一定程度上可提高3类乳液的稳定性; 良好结晶颗粒稳定乳液的能力强于低结晶度的颗粒; 对于低结晶度颗粒, 大颗粒稳定乳液的能力比小颗粒更强.  相似文献   

3.
通过乳化剂OP-10的乳化作用,将油相为溶有苯胺单体的1-丁基-3-甲基咪唑六氟磷酸盐([bmim]PF6)离子液体与水形成了水包油型微乳液.利用该微乳液制备了纳米粒径的导电聚苯胺颗粒.红外光谱和能量散射谱分析结果表明,离子液体负离子已掺杂进入聚苯胺分子链,所得聚苯胺颗粒热稳定性和电化学稳定性好,且具有良好的充放电性能.  相似文献   

4.
采用反相微乳液体系中功能化基团同步修饰(油相修饰)以及反相微乳液制备纳米颗粒后再通过功能化基团后续修饰(水相修饰)的方法分别制备了纯硅壳纳米颗粒(SiNP)、氨基化硅壳纳米颗粒(NSiNP)、羧基化硅壳纳米颗粒(CSiNP)和聚乙二醇硅壳纳米颗粒(PSiNP). 通过沉降时间和离心速度观察了不同方法获得的不同功能化基团修饰的硅壳纳米颗粒在水中的分散及稳定性, 并采用激光粒度仪、透射电子显微镜对分散效果进行了分析. 结果表明, 采用同一修饰方法分别制备的纳米颗粒在水中的分散及稳定性顺序是CSiNP≥PSiNP>SiNP>NSiNP; 油相修饰法获得的CSiNP和PSiNP的分散性要优于水相修饰法获得的. PSiNP和CSiNP在Hela细胞表面的非特异性吸附非常小, 而NSiNP却显示了强烈的细胞非特异性吸附.  相似文献   

5.
用透明质酸(HA)和溶菌酶(Lys)静电自组装制备胶体粒子。研究了溶菌酶和透明质酸的质量比(WR)对胶体粒子性质的影响,得到最佳质量比下的胶体粒子。用纳米粒度仪和透射电镜对胶体粒子的尺寸和形貌进行表征。结果显示,形成的胶体粒子为球形结构,粒径约250 nm。此胶体粒子可二次组装在油水界面稳定水包油型类凝胶Pickering乳液。详细研究了pH和盐浓度对胶体粒子性质和乳化性能的影响。结果表明,随着pH增加,胶体粒子粒径先减小后增加;乳液滴粒径逐渐减小,乳化性能逐渐增加。随着盐浓度增加,胶体粒子和乳液滴粒径先降低后增加,乳化性能先增加后降低。进一步研究了pH和盐浓度对乳液中溶菌酶活性的影响。研究表明,制备的乳液均保留了一定的活性,在食品、医药和化妆品领域具有潜在的应用。  相似文献   

6.
选用复配表面活性剂,用水代替柴油作为携带介质,将超疏水的纳米聚硅均匀稳定地分散在水中,制备成水基纳米聚硅乳液.室内试验结果表明:所制备的水基纳米聚硅乳液的分散性和稳定性较好,制备过程简单易行,便于实现工业化生产.粒径为10 nm左右的SiO2微粒在水中分散良好,该乳液遇盐发生破乳,释放出来的纳米聚硅微粒粒径在5~10 ...  相似文献   

7.
原位聚合法制备聚醋酸乙烯酯/纳米SiO2复合乳液   总被引:3,自引:0,他引:3  
采用原位乳液聚合法制备了聚醋酸乙烯酯/纳米二氧化硅复合浮液。用红外光谱、原子力显微镜以及透射电镜等现代测试手段对复合材料进行了表征.考察了纳米二氧化硅在聚醋酸乙烯酯乳液中的分散状况及纳米二氧化硅用量对复合浮液性能的影响。结果表明:随纳米二氧化硅用量增加,复合乳液的干态,湿态粘接强度均而明显提高;乳液的粘度减小;复合乳液的胶膜耐热性提高。  相似文献   

8.
蔗渣纳米纤维素的制备与表征   总被引:2,自引:0,他引:2  
以甘蔗渣为原料,通过无废酸的一步法、两步法和三步法制备了蔗渣纳米纤维素(BNC),并与酸解法进行对比.采用傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)、X射线衍射(XRD)和热重分析(TGA)等手段表征了纳米纤维素的光谱性质、形貌结构、结晶性能及热稳定性能.结果表明,4种方法处理后纤维形貌尺寸均可达到纳米级别且在一定浓度的水溶液中均可形成类果冻状的胶体,其中酸解法和三步法所制备的纳米纤维素长径比较小,形貌多为短棒状,在水溶液中分散稳定性较好,可稳定悬浮超过30 d;一步法和两步法所制备的纳米纤维素长径比较大,为类纤维状结构,分散稳定性相对较差,但也可稳定悬浮至少5 d;一步法所制备的纳米纤维素晶型为纤维素Ⅰ型和纤维素Ⅱ型的混合物,两步法、三步法和酸解法处理后的纤维晶型没有改变,仍然保持纤维素Ⅰ型.与酸解法相比,无废酸法所制备的纳米纤维素热稳定性更优,无废酸法工艺简单,反应条件温和,而酸解法反应步骤繁复,会产生大量废酸增加后续处理成本.  相似文献   

9.
张海霞 《化学通报》2015,78(11):1039-1044
采用耗散颗粒动力学模拟方法从介观尺度上研究了水包油(O/W)型微乳液的形成条件并对所形成的O/W型微乳液的耐环境(油水体积比、温度、盐度和剪切作用)稳定性进行分析。结果表明,油水体积比小于1:3时,油水界面张力最小,可以形成O/W型微乳液。此微乳液具有一定的耐低温稳定性,其耐温稳定性范围为0.8 kBT~1.0 kBT。在此温度范围内,1.0 kBT时的微乳液具有最好的耐盐性,αHH降低为22时微乳液才发生相转变。此外,剪切作用对不同条件下所形成的微乳液具有一定破坏作用,当温度为1.0 kBT、αHH为25时,剪切速率增加到0.009,微乳液才受到破坏,也就是说,此条件下的微乳液是稳定的。此模拟结果从介观尺度上提供了微乳液的结构变化,为微乳液的实际应用提供理论指导。  相似文献   

10.
采用海藻酸酰胺衍生物通过Ugi多组分反应制备了新颖的聚合物-二氧化硅(Oct-Alg-Si O_2)纳米粒子.通过氢核磁共振波谱(~1H NMR)和X射线光电子能谱(XPS)对Oct-Alg-Si O_2的结构和表面元素组分进行了表征.采用透射电子显微镜(TEM)、Zeta电位和激光粒度分析仪对Oct-Alg-Si O_2的形貌、粒径和胶体性能进行了探索.结果表明,海藻酸酰胺衍生物共价接枝到氨基二氧化硅(Si O_2-NH_2)纳米粒子的表面,提高了其平均直径,调控了其Zeta电位,在水介质中能够表现出良好的分散稳定性.以10%的液体石蜡为油相,采用Oct-Alg-Si O_2制备了Pickering乳液.在油水界面能够形成液滴粒径为5.7μm的稳定Pickering乳液.随着水相p H值的增大,乳液体积分数增大,稳定性增强.细胞相容性实验结果表明,Oct-Alg-Si O_2纳米粒子具有极好的生物相容性.  相似文献   

11.
The double emulsion technology has a potential effect on the development of diversity and quality of functional foods by means of decreasing oil or salt concentration, encapsulating and controlling release of valuable components. In this study, it was aimed to formulate stable double emulsions to be used in food systems. W1/O ratios of primary emulsions, stabilized by polyglycerol polyricinoleate (PGPR), were designed as 2:8 and 4:6, and (W1/O)/W2 ratios of the double emulsions were used as 2:8 and 4:6. W/O/W phase ratios, homogenization methods applied to primary emulsion (high-speed homogenization, ultrasonic homogenization), and emulsifier types used in W2 phase [sodium caseinate (SC), xanthan gum, lecithin-whey protein concentrate] were used as independent variables. Particle size and distributions, stability, encapsulation efficiency (EE), rheological properties, long-term stability, and morphological properties of the double emulsions were investigated.

The double emulsions prepared with SC and (W1/O)/W2 ratio of 4:6, were found to have the higher stability values, higher apparent viscosity, and lower particle size. High-speed homogenization applied to primary emulsion reduced particle size of the double emulsion and increased apparent viscosity, but did not affect stability and EE of the double emulsions, significantly.  相似文献   

12.
A one-step double emulsification protocol using one surfactant was developed for oil-in-water-in-oil (O(1)/W/O(2)) double emulsions. Two n-alkane oils and three different surfactants were studied, with focus placed on a formulation containing mineral oil, glycerol monoleate (GMO) and deionized water. Phenomenologically, double emulsion formation and stability originate from the combined actions of phase inversion and interfacial charging of the oil/water interface during high shear homogenization. Based on the extent of double emulsion formation and stability, a critical emulsification zone dependent on the weight ratios of GMO to water was identified. Within this critical zone, enhanced O(1)/W/O(2) emulsion formation occurred at higher pH and lower salt concentrations, demonstrating the key role of interfacial charging on double emulsification. Overall, this novel approach provides a novel platform for the development of double emulsions with simple compositions and processing requirements.  相似文献   

13.
Experimental investigations on the hydrophobic modification of SPG membranes and the preparation of monodisperse W/O (water-in-oil) emulsions using the modified membranes were carried out. Effects of the osmotic pressure of disperse phase, the average pore size of membranes, emulsifier concentrations in continuous phase and the transmembrane pressure on the average size, size distribution and size dispersion coefficient of emulsions were systematically studied. The stability of W/O emulsions was also investigated. The results showed that SPG membranes took on excellent hydrophobicity through the modification by silane coupler reagent (octyltriethoxysilane) or by silicone resin (polymethylsilsesquioxane). Monodisperse W/O emulsions with size dispersion coefficient of about 0.25, which meant high monodispersity, were successfully prepared by using the hydrophobically modified SPG membranes with average pore sizes of 1.8, 2.0, 2.5, 4.8 and 11.1 microm. When the osmotic pressure was lower than 0.855 MPa, the average size of emulsions was gradually increased while the size dispersion coefficient delta gradually decreased with the osmotic pressure; when the osmotic pressure was higher than 0.855 MPa, both the coefficients kept unvarying. When kerosene was saturated with disperse phase in advance, the average size of emulsions became larger and the monodispersity of emulsions was slightly better than that prepared using unsaturated kerosene. The smaller the pore size of SPG membranes was, the better the monodispersity of the W/O emulsions. The average size and size dispersion coefficient delta were nearly independent on the emulsifier concentrations when the PGPR concentration was in the range from 0.5 to 5.0 wt%, whereas both of them slightly increased as the PGPR concentration was below 0.5 wt%. The effect of the transmembrane pressure on size distributions was slight. Both the average size and size dispersion coefficient delta slightly increased to some extent with the increase of the transmembrane pressure in the experimental range. The stability of the W/O emulsions was dependent on the storage time. The mean size of W/O emulsions decreased gradually with the increase of storage time at the first 35 days, and then kept constant; while the size dispersion coefficient of W/O emulsions was nearly not changed.  相似文献   

14.
Abstract

The aim of this work was to study the encapsulation properties of polyols-in-oil-in-water (P/O/W) multiple emulsions for Vitamin C (Vc). The influence of formulation factors, including the concentration of lipophilic emulsifier, hydrophilic emulsifier, salt and glycerol had been investigated. The results indicated that the encapsulation stability could be improved by increasing the lipophilic emulsifier concentration which could strengthen the interfacial film. In contrast, the excess of hydrophilic emulsifier destabilized the emulsion. The presence of glycerol in the outer aqueous phase accelerated the phase transfer, thus reduced the encapsulation rate. The addition of salt in inner polyols phase had little effect on encapsulation rate while markedly affected the morphology and stability of this system. P/O/W multiple emulsions showed better encapsulation stability than the W/O/W multiple emulsions as the former’s encapsulation rate could remain more than 75% after 2?weeks while the latter only remained less than 60%. Meanwhile, the P/O/W emulsions exhibited higher storage modulus (G’), bigger loss modulus (G’’) and broaden linear viscoelastic regions than W/O/W emulsions.  相似文献   

15.
The influence of environmental conditions (pH, NaCl, CaCl2, and temperature) on the properties and stability of oil-in-water (O/W) emulsions containing oil droplets surrounded by one-, two-, or three-layer interfacial membranes has been investigated. Three oil-in-water emulsions were prepared with the same droplet concentration and buffer (5 wt % corn oil, 5 mM phosphate buffer, pH 6) but with different biopolymers: (i) primary emulsion: 0.5 wt % beta-Lg; (ii) secondary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan; (iii) tertiary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan, 0-2 wt % gelatin. The secondary and tertiary emulsions were prepared by electrostatic deposition of the charged biopolymers onto the surfaces of the oil droplets so as to form two- and three-layer interfacial membranes, respectively. The stability of the emulsions to pH (3-8), sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) was determined. We found that multilayer emulsions had better stability to droplet aggregation than single-layer emulsions under certain environmental conditions and that one or more of the biopolymer layers could be made to desorb from the droplet surfaces in response to specific environmental changes (e.g., high salt or high temperature). These results suggest that the interfacial engineering technology used in this study could lead to the creation of food emulsions with improved stability to environmental stresses or to emulsions with triggered release characteristics.  相似文献   

16.
Poly(styrene-co-methacrylic acid) (PS-co-MAA) particles were synthesized via surfactant-free emulsion polymerization and then used as particulate emulsifiers for preparation of Pickering emulsions. Our results showed that adjusting the solution pH can tune the wettability of PS-co-MAA particles to stabilize either water-in-oil (W/O) or oil-in-water (O/W) Pickering emulsions. Stable W/O emulsions were obtained with PS-co-MAA particles at low pH values due to their better affinity to the dispersed oil phase. In contrast, increasing the pH value significantly changed the stabilizing behavior of the PS-co-MAA particles, leading to the phase inversion and formation of stable O/W emulsions. We found that the oil/water ratio had a significant influence on pH value of the phase inversion. It decreased with decreasing the oil/water ratio, and no phase inversion occurred when the styrene volume fraction reduced to 10 %. Additionally, macroporous polystyrene (PS) foam and PS microspheres were obtained via polymerization of Pickering high internal phase emulsion (Pickering HIPE) and O/W Pickering emulsion, respectively.  相似文献   

17.
The objective of this study was to investigate the significance of inner and outer phase pressure, as well as interfacial film strength on W/O/W multiple emulsion stability using microscopy and long-term stability tests. It was observed that immediately upon applying a coverslip to samples the multiple droplets deformed and there was coalescence of the inner aqueous droplets. Under certain conditions (such as lipophilic surfactant concentration and internal phase osmotic pressure) the destabilized multiple emulsions formed unique metastable structures that had a "dimpled" appearance. The formation of these metastable structures correlated with the real-time instability of the W/O/W multiple emulsions investigated. Multiple emulsion stability also correlated with the interfacial film strength (measured by interfacial elasticity) of the hydrophobic surfactant at the mineral oil/external continuous aqueous phase interface. The formation of the metastable dimpled structures and the long-term stability of the multiple emulsions were dependent on the osmotic pressure of the inner droplets and the Laplace curvature pressure as described by the Walstra Equation (P. Walstra, "Encyclopedia of Emulsion Technology" (P. Becher, Ed.), Vol. 4. Dekker, New York, 1996). It appears that the effect of coverslip pressure on multiple emulsions may be useful as an accelerated stability testing method or for initial formulation screening.  相似文献   

18.
Water-in-oil (W/O) emulsions are very common in the petroleum industry, and their viscosities are the principle parameters for the operation design. Typical correlations composed by one or two factors cannot always fit the apparent viscosity of W/O emulsions very well, especially when applied to the crude oil/water emulsions. The viscosities of W/O emulsions, which were made from three kinds of crude oil, were measured by Anton Paar MCR302 viscometer at atmospheric pressure with different temperatures as well as shear rates. The experiment results indicate that W/O emulsion would exhibit Newtonian characteristic when water content is no higher than 0.2 and non-Newtonian characteristic otherwise. According to the experimental data, a modified correlation based on the Broughton–Squires model and Ronningsen model was introduced to predict the viscosity of W/O emulsions, and the comparison results showed that the new modified correlation has better accuracy than the original models.  相似文献   

19.
To investigate the effect of the droplet/pore size ratio on membrane demulsification, water-in-oil (W/O) emulsions with uniform-sized droplets was demulsified by permeation through Shirasu-porous-glass (SPG) membranes with a narrow pore size distribution at mean droplet/pore diameter ratios of 0.52–5.75. At transmembrane pressures above a critical pressure, the water droplets larger than the membrane pore size were demulsified, where the SPG membrane acted as a coalescer because the hydrophilic membrane surface had a high affinity for the water droplets. By contrast, at transmembrane pressures below the critical pressure, the larger water droplets were all retained by the membrane due to the sieving effect of the uniform-sized pores. When a W/O emulsion with a mean droplet diameter of 2.30 μm was allowed to permeate through a membrane with a mean pore diameter of 0.86 μm, the demulsification efficiency increased with increasing transmembrane pressure, to a maximum value of 91% at a transmembrane pressure of 392 kPa, and then decreased, while the transmembrane flux increased almost linearly with increasing transmembrane pressure. The demulsification efficiency was higher for higher water phase content and lower concentration of the surfactant, tetraglycerin condensed ricinoleic acid ester, in the emulsions due to the reduction of the emulsion stability.  相似文献   

20.
Mixtures of polyols (glycerol, propylene glycol, glucose) and water were emulsified in oil (isopropyl myristate (IPM), medium chain triglycerides (MCT), long chain triglycerides (LCT), and d-limonene) under elevated pressures and homogenization, in the presence of polyglycerol polyricinoleate (PGPR), glycerol monooleate (GMO), and their mixture as emulsifiers to form water-in-oil emulsions. High pressures was applied to: a) the emulsion, b) the aqueous phase and c) the oil phase in the presence of the emulsifiers (PGPR and GMO). Under optimal pressure (2000 atms) applied to the ready-made emulsion or to the aqueous phase prior to its emulsification, and with optimal composition (30wt% polyol in the aqueous phase and MCT as the oil phase), the aqueous droplets were stable for months and submicron in size (0.1 μm). Moreover, due to equalization of the oil and the aqueous phases refractive indices, the emulsions were almost transparent. Pressure and polyols have synergistic effects on the emulsions stability. During preparation, surface tensions and interfacial tensions were dramatically reduced until an optimal water/polyols ratio was achieved, which allows rupturing of the droplets to submicronal size (0.1 μm) without recoalescence and fast diffusion to the interface. These unique W/O emulsions are suitable for preparing W/O/W double emulsions for sustained release of active materials for food applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号