首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用尿素作为氮源,通过热退火法制备氮掺杂还原氧化石墨烯,然后以乙酰丙酮钴作为钴源通过水热法制备氮掺杂还原氧化石墨烯/四氧化三钴杂化纳米片作为催化氧还原和氧析出反应的双功能催化剂。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线电子能谱仪(XPS)等对其进行形貌结构表征,通过旋转圆盘电极等电化学测试对其电催化性能进行分析,可以看出该催化剂具有良好的氧还原和氧析出催化性能。  相似文献   

2.
郑龙珍  陶堃  熊乐艳  叶丹  韩奎  纪忆 《化学学报》2012,70(22):2342-2346
以氧化石墨烯(GO)为碳载体, K3Fe(CN)6同时作为N源和Fe源, 经热处理后构建了新型Fe/N/C结构的氧气还原催化剂. 在热处理过程中, 氧化石墨烯上的官能团分解脱离形成活性中心, Fe元素和N元素的同时掺杂是通过氧化石墨烯与K3Fe(CN)6之间的相互作用而实现的. 通过傅立叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)表征证明了这种非贵金属催化剂中N元素和Fe元素的成功掺杂, 在催化剂中N元素主要是以吡啶式氮、吡咯式氮和石墨式氮的形式存在, Fe(Ⅱ)和Fe(Ⅲ)则与其中的吡啶式氮配位形成Fe-Nx结构. 采用循环伏安法(CV)和旋转圆盘电极(RDE)技术, 研究其在碱性介质中对氧气还原反应(ORR)的电催化性能. 实验结果显示: Fe/N/C催化剂具有良好的ORR电催化活性, 在碱性溶液中的起始电位为-0.15 V, 同时有着良好的稳定性和抗甲醇性能.  相似文献   

3.
以热解氧化石墨烯材料为碳基底,分别使用有机氮源和无机氮源对其进行氮掺杂处理,制备了一系列氮掺杂石墨烯材料.采用透射电子显微镜、扫描电子显微镜、拉曼光谱和X射线光电子能谱等表征方法考察了氮掺杂石墨烯的生长机理.结果表明,随着制备过程中退火温度的改变,氮掺杂石墨烯中不同氮物种的含量有显著差别.这种差异是由不同氮物种化学环境的差异所导致的.所制备的含氮石墨烯材料对乙苯选择性氧化制苯乙酮反应均表现出优良的催化活性.其中,石墨氮的含量对于提高苯乙酮收率起到至关重要的作用.此外,通过氧化剂控制活化的方法可以消除过多的结构缺陷和过量氮掺杂对催化反应的不利影响,有效提升氮掺杂石墨烯的催化活性.  相似文献   

4.
采用电化学还原方法制备了铁氰化镍-石墨烯复合薄膜电极,扫描电子显微镜(SEM)表征电还原石墨烯和铁氰化镍-石墨烯复合材料的表面形貌。采用循环伏安和计时电流技术研究了该修饰电极对抗坏血酸(AA)的电催化氧化性能,据此建立了一种测定AA的电化学分析新方法。由于石墨烯和铁氰化镍纳米颗粒之间的协同效应,使得该复合修饰电极对抗坏血酸具有优异的电催化活性。在0.1 mol/L pH 7.00的PBS溶液中,抗坏血酸的催化氧化电流与其浓度在1.0×10-4~7.0×10-4mol/L范围内呈良好的线性关系,检出限为3.1×10-5mol/L(S/N)。  相似文献   

5.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

6.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

7.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

8.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

9.
石墨烯负载高活性Pd催化剂对乙醇的电催化氧化   总被引:4,自引:0,他引:4  
以石墨粉为原料,采用Hummers法液相氧化合成了氧化石墨(GO),然后用化学一步还原制得石墨烯负载钯催化剂.X射线衍射(XRD)、透射电镜(TEM)表征表明,Pd在石墨烯载体上有较好的分散度,粒径为3-5nm.电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明,与传统Pd/VulcanXC-72相比,Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

10.
以石墨粉为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 然后用化学一步还原制得石墨烯负载钯催化剂. X射线衍射(XRD)、透射电镜(TEM)表征表明, Pd在石墨烯载体上有较好的分散度, 粒径为3-5 nm. 电化学活性面积(EASA)、循环伏安(CV)、计时电流(CA)和计时电位(CP)等电化学测试表明, 与传统Pd/Vulcan XC-72相比, Pd/石墨烯催化剂对碱性介质中乙醇电催化氧化的催化活性有了很大的提高.  相似文献   

11.
Nitrogen-doped graphene (nG) is a promising metal-free catalyst for oxygen reduction reaction (ORR) on the cathode of fuel cells. Here we report a facile preparation of nG via pyrolysis of graphene oxide with melamine. The morphology of the nG is revealed using scanning electron microscopy and transmission electron microscopy while the successful N doping is confirmed by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The resulting nG shows high electrocatalytic activity toward ORR in an alkaline solution with an onset potential of -0.10 V vs. Ag/AgCl reference electrode. The nG catalyzed oxygen reduction exhibits a favorable formation of water via a four-electron pathway. Good stability and anti-crossover property are also observed, which are advantageous over the Pt/C catalyst. Furthermore, the effect of pyrolysis temperature on the structure and activity of nG is systematically studied to gain some insights into the chemical reactions during pyrolysis.  相似文献   

12.
Iron‐ and nitrogen‐functionalized graphene (Fe‐N‐G), as well as iron‐ and nitrogen‐functionalized oxidized graphene (Fe‐N‐Gox) catalysts were synthesized as non‐noble metal electrocatalysts for oxygen reduction reaction (ORR). The physical properties of the resultant catalysts were characterized using nitrogen adsorption measurements, X‐ray diffraction, Raman and X‐ray photoelectron spectroscopies and transmission electron microscopy. Subsequently, ORR activities of the catalysts were determined electrochemically using a conventional three‐electrode cell via cyclic voltammetry with a rotating disc electrode, the results of which indicated that the synthesized catalysts had a marked electrocatalytic activity towards ORR in acid media. Among the synthesized catalysts, that functionalized using 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine as nitrogen source had the highest electrocatalytic activity with the highest onset potential (0.98 V/SHE) and limiting current density (5.12 mA cm−2). The findings are particularly important to determine a non‐precious metal catalyst for ORR activity in fuel cells.  相似文献   

13.
Graphitic carbon nitride(g-C3N4) was synthesized via direct pyrolysis of melamine and its electrocatalysis toward oxygen reduction reaction was studied.The morphology and structures of the products were characterized by scanning electron microscope and X-ray powder diffractometer.It was found that higher pyrolysis temperature resulted in more perfect crystalline structure of the graphitic carbon nitride product.Electrochemical characterizations show that the g-C3N4 has electrocatalytic activity toward ORR through a two-step and two-electron process.  相似文献   

14.
Graphene supported Pt nanoparticles were fabricated via electrochemical reduction method and the application of them in oxygen reduction reaction was also investigated. The results of field emission scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS) and Raman spectroscopy reveal that the interaction between Pt nanoparticles and graphene sheets can prevent graphene from agglomeration and improve the electronic conductivity of the composite. And the graphene supported Pt nanoparticles exhibit excellent electrocatalytic activity toward oxygen reduction reaction.  相似文献   

15.
Electrocatalysts are required for clean energy technologies (for example, water‐splitting and metal‐air batteries). The development of a multifunctional electrocatalyst composed of nitrogen, phosphorus, and fluorine tri‐doped graphene is reported, which was obtained by thermal activation of a mixture of polyaniline‐coated graphene oxide and ammonium hexafluorophosphate (AHF). It was found that thermal decomposition of AHF provides nitrogen, phosphorus, and fluorine sources for tri‐doping with N, P, and F, and simultaneously facilitates template‐free formation of porous structures as a result of thermal gas evolution. The resultant N, P, and F tri‐doped graphene exhibited excellent electrocatalytic activities for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The trifunctional metal‐free catalyst was further used as an OER–HER bifunctional catalyst for oxygen and hydrogen gas production in an electrochemical water‐splitting unit, which was powered by an integrated Zn–air battery based on an air electrode made from the same electrocatalyst for ORR. The integrated unit, fabricated from the newly developed N, P, and F tri‐doped graphene multifunctional metal‐free catalyst, can operate in ambient air with a high gas production rate of 0.496 and 0.254 μL s−1 for hydrogen and oxygen gas, respectively, showing great potential for practical applications.  相似文献   

16.
Electrocatalysts are required for clean energy technologies (for example, water‐splitting and metal‐air batteries). The development of a multifunctional electrocatalyst composed of nitrogen, phosphorus, and fluorine tri‐doped graphene is reported, which was obtained by thermal activation of a mixture of polyaniline‐coated graphene oxide and ammonium hexafluorophosphate (AHF). It was found that thermal decomposition of AHF provides nitrogen, phosphorus, and fluorine sources for tri‐doping with N, P, and F, and simultaneously facilitates template‐free formation of porous structures as a result of thermal gas evolution. The resultant N, P, and F tri‐doped graphene exhibited excellent electrocatalytic activities for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The trifunctional metal‐free catalyst was further used as an OER–HER bifunctional catalyst for oxygen and hydrogen gas production in an electrochemical water‐splitting unit, which was powered by an integrated Zn–air battery based on an air electrode made from the same electrocatalyst for ORR. The integrated unit, fabricated from the newly developed N, P, and F tri‐doped graphene multifunctional metal‐free catalyst, can operate in ambient air with a high gas production rate of 0.496 and 0.254 μL s?1 for hydrogen and oxygen gas, respectively, showing great potential for practical applications.  相似文献   

17.
氮掺杂纳米碳块的制备及氧还原的高电化学催化活性   总被引:1,自引:0,他引:1  
面对全球化的能源危机,燃料电池由于其高效性和可重复使用性成为越来越具有潜力的能量转化设备.阴极发生的氧气还原反应对于燃料电池的性能十分重要,寻找高效的氧还原催化剂在很大程度上可以提高燃料电池的性能.传统的氧还原催化剂是贵金属铂,但是铂的价格十分高,较差的稳定性和选择性限制了它的商业化应用,因此找到一种廉价高效的非贵金属氧还原催化剂来代替铂基催化剂成为目前的研究热点.我们最近发现将纯的三羟甲基氨基甲烷置于管式炉中在800°C下真空烧制2 h,可以简单快捷地得到一种含 N量为4.11%的纳米碳块(标记为 NCNBs-800),该材料可用于催化电化学氧气还原反应.同样情况下在700和900°C下合成的材料标记为 NCNBs-700和 NCNBs-900.采用傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、X射线衍射(XRD)和电化学旋转圆盘方法与技术对催化剂的成分、形貌和电催化性能进行了表征. SEM表明 NCNBs-800为直径为60 nm的碳块,用 FTIR手段表征了 NCNBs-800的结构变化,三羟甲基氨基甲烷中的–OH和–NH2在高温下发生消去反应,形成了饱和度不同的 C–N键和 C–C键.这些饱和度不同的 N原子和 C原子增加了材料的缺陷结构和活性位点,进一步促进了氧还原反应的催化性能.采用 XPS分析了 NCNBs-800表面的元素,通过对 N 1s进行分峰拟合,发现 NCNBs-800含有能促进氧还原性能的吡啶-N和吡咯-N,特别是吡啶-N,它吸电子的能力很强,从而导致与它邻近的 C原子表面具有一定的正电荷,这些正电荷促进了氧气的吸附和还原,为氧气还原反应提供活性位点,促进氧气还原反应的发生. XRD结果表明,三羟甲基氨基甲烷热解前后的 XRD谱图有明显变化,热解后的三羟甲基氨基甲烷呈现两个宽峰,代表着杂化碳的存在. NCNBs-800的衍射峰强度比 NCNBs-700以及 NCNBs-900大,但是宽度则比 NCNBs-700以及 NCNBs-900小,这表明800°C有利于材料的石墨烯化及碳化过程.电化学阻抗可以表明修饰电极的表面性质,阻抗图中高频处半圆的直径大小代表电子转移阻力,低频处的线性部分代表扩散过程.阻抗数据表明, NCNBs-800的电荷转移电阻可与 Pt/C催化剂相比,但是比裸露的玻碳电极小.这表明 NCNBs-800有较好的导电性和电化学性质. CV曲线表明 NCNBs-800氧还原的起始电位是-0.05 V (vs Ag/AgCl),氧气的还原电位是0.20 V (vs Ag/AgCl),说明 NCNBs-800具有良好的电化学催化性能.旋转环盘电极仪测得的氧还原极化曲线表明,在-0.3 to-0.8 V下的 NCNBs-800氧还原的电子转移数为3.4,过氧化氢产率为52%-35%,表明 NCNBs-800呈现一个提高的四电子过程.稳定性对于燃料电池氧气还原反应也是一个十分重要的性能,通过计时电流技术在电压为-0.2 V下对 NCNBs-800与 Pt/C进行了稳定性测试.结果表明,在2500 s之后 NCNBs-800相对于它的最初催化活性损失为17.56%,而 Pt/C损失了30.71%,从而说明 NCNBs-800的稳定性优于 Pt/C.总之,我们通过一步热解的简易技术制备了一种氮掺杂纳米碳材料,该碳材料具有廉价、高效和容易制备等特点,具有良好的电化学催化性能,有望在燃料电池氧化还原反应中得到大规模应用.  相似文献   

18.
In this work, a series of nitrogen-doped graphenes (NGs) were prepared by deriving from pyrolysis of graphite oxide (GO) with urea at different temperatures and high-dispersed PtSn nanoparticles with tunable size were then deposited onto nitrogen-doped graphene (PtSn/NG) by an easy-controlled template-free method. The PtSn/NG and undoped graphene (PtSn/G) were carried out as anode catalysts for the electrooxidation of ethanol. The microstructure and morphology of the synthesized catalysts were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. The electrocatalytic performance toward ethanol oxidation was evaluated by cyclic voltammetry and chronoamperometry. It is found that the pyrolysis temperature is an important factor which influenced the contents of nitrogen and functional groups of nitrogen. And then, the functional groups of nitrogen affect the distribution, size, and contents of PtSn nanoparticles. The as-obtained optimal PtSn/NG-600 sample with narrower size distribution and high content of PtSn exhibits higher electrocatalytic activity and stability compared with the other samples, implying the potential application for ethanol fuel cells.  相似文献   

19.
Ternary Ag nanoparticles (NPs)@polyoxometalate (POM)/reduced graphene oxide (rGO) nanohybrids were prepared by a facile photoreduction method, using POM as the photocatalyst, reducing and bridging molecules. The structure of the nanohybrids was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, etc. Most importantly, both the rotating disk electrode and rotating ring-disk electrode tests indicated that the Ag NPs@POM/rGO nanohybrids exhibited excellent electrocatalytic activity towards oxygen reduction reaction via a direct four-electron transfer pathway due to the synergistic effect of Ag NPs and rGO.  相似文献   

20.
采用微波法在氨气气氛下快速加热石墨烯(G)制备了含氮量在4.05 wt%-5.47 wt%的掺氮石墨烯(NG). 将上述的掺氮石墨烯用作碱性电解质条件下的氧还原电催化剂,起始还原电势为0.17 V(vs SHE),接近商用碳载铂催化剂的0.21 V(vs SHE). 采用透射电子显微镜、拉曼光谱和X射线光电子能谱研究了掺氮石墨烯的形貌、结构和掺杂氮原子的键合方式. 结果发现,掺氮石墨烯的氧还原起始电位随着石墨氮原子含量的提高而上升,说明石墨类型的氮含量是影响其氧还原催化活性的关键因素. 实验结果表明,微波法快速制备的掺氮石墨烯在碱性条件下表现出较高的氧还原催化活性,具有作为碱性燃料电池阴极催化剂的潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号