首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
杨颙  张为俊  高晓明 《中国化学》2006,24(7):887-893
A theoretical study on the blue-shifted H-bond N-H…O and red-shifted H-bond O-H…O in the complexHNO…H_2O_2 was conducted by employment of both standard and counterpoise-corrected methods to calculate thegeometric structures and vibrational frequencies at the MP2/6-31G(d),MP2/6-31 G(d,p),MP2/6-311 q G(d,p),B3LYP/6-31G(d),B3LYP/6-31 G(d,p) and B3LYP/6-311 G(d,p) levels.In the H-bond N-H…O,the calcu-lated blue shift of N-H stretching frequency is in the vicinity of 120 cm~(-1) and this is indeed the largest theoreticalestimate of a blue shift in the X-H…Y H-bond ever reported in the literature.From the natural bond orbital analy-sis,the red-shifted H-bond O-H…O can be explained on the basis of the dominant role of the hyperconjugation.For the blue-shifted H-bond N-H…O,the hyperconjugation was inhibited due to the existence of significant elec-tron density redistribution effect,and the large blue shift of the N-H stretching frequency was prominently due tothe rehybridization of sp~n N-H hybrid orbital.  相似文献   

2.
The equilibrium geometries and fundamental frequencies of Na2S are calculated at HF, MP2(FC, FU), and MP3 with the 6–31G(d) basis set and at HF and MP2(FC, FU) with the 6–31G(d) basis set, respectively. The total energy at MP2(FU)/6–31G(d)-optimized geometry is computed at MP4 with 6–311G(d, p), 6–311 + G(d, p), and 6–311G(2df, p), at QCISD(T)/6–311G(d, p), and at MP2/6–311G(3df, 2p) levels, respectively. The dissociation energy, the atomization energy, and the heat of formation for Na2S are evaluated using the G1 and G2 models. The calculated results indicated that Na2S in its ground state was a bent structure (C2v). Electron correlation corrections on the bending angle are very significant. The equilibrium geometrical parameters are Re(Na-S) = 2.45 Å and ∠Na-S-Na = 111.13° at the MP2(FU)/6–31G(d) level. The theoretically estimated dissociation energy, total atomization energy, and heat of formation are 67.07, 117.55, and 0.35 kcal mol−1, respectively, at 298.15 K. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
Abstract  The molecular and crystal structure of a 1:1 co-crystal of 4,4′-dimethyl-7,7′-bi([1,2,5]thiadiazolo[3,4-b]pyridylidene)–chloranilic acid, (1), has been determined by X-ray diffraction at the monoclinic space group P21/c with cell parameters of a = 8.422(6), b = 7.343(4), c = 16.112(7) ?, β = 104.988(8)°, V = 962.5(10) ?3 and Z = 2. In the crystal structure, two components connect via the intermolecular O–H···N hydrogen bonds [2.804(4) ?] and S···O heteroatom interaction [2.945(3) ?] with R 2 2(7) couplings to form a unique and infinite one-dimensional supramolecular tape structure. The calculations of (1) at the HF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) levels can almost reproduce X-ray geometry. In addition, the distances of the intermolecular O–H···N and S···O interactions by MP2/6-31G(d) and B3LYP/6-31G(d) levels agree well with those in the crystal. The calculated binding energies corrected BSSE and ZPE are −4.487 (HF), −7.473 (MP2), and −5.640 (B3LYP) kcal/mol. The results suggest that the complex (1) is very stable and the dispersion interaction is significantly important for the attractive intermolecular interaction in (1). The NBO analysis has revealed that the n(N) → σ*(O–H) interaction gives the strongest stabilization to the system and the major interaction for the intermolecular S···O contact is n(O) → σ*(S–N). Index Abstract  In the crystal structure of the title compound, the molecules are linked by intermolecular O–H···N hydrogen bonds and short S···O heteroatom interactions with R 2 2(7) couplings to construct a unique and infinite one-dimensional supramolecular tape structure.   相似文献   

4.
Density functional theory with the combined Becke3-LYP exchange-correlation energy functional [DFT(B3-LYP) method] using the 6-31G(d, p) basis set is applied to predict molecular parameters (geometries, rotational constants, dipole moments) and vibrational IR spectra (harmonic wavenumbers, absolute intensities) of six tautomers of the isocytosine molecule. The results are compared with the corresponding data calculated at the conventional ab initio Hartree-Fock (HF) level using the same basis set and with available experimental data. Calculations show that (a) three amino tautomers are slightly nonplanar species with, evidently, a distorted amino group, (b) the DFT (B3-LYP)/6-31G(d, p) method predicts better molecular parameters, than do the HF calculations, and (c) the DFT(B3-LYP)-calculated vibrational IR spectra of isocytosine agree well with the available recorded IR spectra, and they show marked improvement over the IR spectra predicted at the HF/6-31G(d, p) level. Tautomeric stabilities of isocytosine are discussed on the basis of computed electronic energies by the DFT(B3-LYP) and ab initio approaches [including the MP2 and MP4(SDQ) calculations of electronic energies] and predicted zero-point vibrational energies by DFT(B3-LYP) and HF methods. This relative energies at 0 K of the tautomeric forms of isocytosine predicted by both conventional ab initio and DFT(B3-LYP) methods correlate well with the experimental data, showing the predominance of the aminohydroxy tautomer of isocytosine for an isolated molecule. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
An investigation employing the ab initio molecular orbital (MO) and density functional theory (DFT) methods to calculate structural optimization and conformational interconversion pathways for the two diastereoisomeric forms, (±) and meso configurations of 1,3,7,9-tetraphospha-cyclododeca-1,2,7,8-tetraene (1) was undertaken. Two axial symmetrical conformations are found for (±)-1 configuration. (±)-1-TB axial symmetrical form is found to be about 0.35 and 0.99 kcal mol?1 more stable than (±)-1-Crown axial symmetrical conformation, as calculated by HF/6-31G*//HF/6-31G* and B3LYP/6-31G*//HF/6-31G* levels of theory, respectively. The unsymmetrical meso-1-TBCC form is found to be the most stable geometry, among the various conformations of meso-1 configuration. HF/6-31G*//HF/6-31G* and B3LYP/6-31G*//HF/6-31G* results showed that between the two most stable conformations of (±) and meso configurations, (±)-1-TB is more stable than meso-1-TBCC by about 3.35 and 2.43 kcal mol?1, respectively. In addition, MP2/6-31G* and B3LYP/6-311+G** results showed that the (±)-1-TB form is about 1.10 and 2.36 kcal mol?1 more stable than the meso-1-TBCC form. Further, NBO results revealed that in the most stable form of meso configuration (meso-1-TBCC), the sum of the π* allenic antibonding orbital occupancies (Σ π *occupancy) is greater than dl configuration ((±)-1-TB). Also, NBO results indicated that in the (±)-1-TB conformer, the sum of σ and π allenic moieties bonding orbital deviations (Σ σ dev+Σ π dev) from their normal values, is lower than in the meso-1-TBCC form.  相似文献   

6.
In this work, the experimental and theoretical vibrational spectra of 2-chloro-4-methylaniline (2Cl4MA, C7H8NCl) were studied. FT-IR and FT-Raman spectra of 2Cl4MA in the liquid phase have been recorded in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock (HF) and density functional method (B3LYP) with the 6-31G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p) and 6-311G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) basis sets. The vibrational frequencies have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The DFT-B3LYP/6-311++G(d,p) calculations have been found more reliable than the ab initio HF/6-311++G(d,p) calculations for the vibrational study of 2Cl4MA. The optimized geometric parameters (bond lengths and bond angles) were compared with experimental values of aniline and p-methylaniline molecules.  相似文献   

7.
Fumaric acid was reacted with the binary superacidic systems HF/SbF5 and HF/AsF5. The O,O'-diprotonated [C4H6O4]2+([MF6])2 (M = As, Sb) and the O-monoprotonated [C4H5O4]+[MF6] (M = As, Sb) species are formed depending on the stoichiometric ratio of the Lewis acid to fumaric acid. The colorless salts were characterized by low-temperature vibrational spectroscopy. In case of the hexafluoridoantimonates single-crystal X-ray structure analyses were carried out. The [C4H6O4]2+([SbF6])2 crystallizes in the monoclinic space group C2/c with four formula units per unit cell and [C4H5O4]+[SbF6] crystallizes in the triclinic space group P1 with one formula unit per unit cell. The protonation of fumaric acid does not cause a notable change of the C=C bond length. The experimental data are discussed together with quantum chemical calculations of the cations [C4H6O4 · 4 HF]2+ and [C4H6O4 · 2 H2CO · 2 HF]2+.  相似文献   

8.
The vibrational spectra of a series of HF solutions in acetone (1:20–8.9:1) are analyzed with the help of special techniques. It is shown that three types of strong heteroassociates (HAs) with 1:1, 4:1, and ≥10:1 stoichiometric ratios of the molecules are formed in the HF-(CH3)2CO binary liquid system. The concentration ranges of the existence of HAs in the solution and the stretching vibrational frequency of their constituent HF molecules are estimated. The density functional method (B3LYP/6-31++G(d,p)) is used to calculate the optimal configurations and IR spectra of the (HF) m ·((CH3)2CO) n molecular complexes (m = 1, 2, 4, 8, n = 1, 2) of different structure. The relative stability of the latter is studied. By comparing the calculated and experimental data, the composition (2:2 and 4:1) and structure of two types of HAs are determined.  相似文献   

9.
The geometric parameters, vibrational frequencies, and thermochemical values of p-quinonimine (p-AQ) and p-aminophenol (p-AP) were computed ab initio (IIF) and by the density functional theory (DFT) method with the 6-31G(d, p) basis set. Cyclic voltammetry with a golden electrode of p-AP solutions in phosphate buffers at pH 7.30 showed that the standard electrode potential of half reaction for p-QI and p-AP was 0.728 V. The standard electrode potentials of half reactions for p-QI and p-AP were calculated using the free energies and solvation energies of p-QI, p-AP, p-benzoquinone (p-BQ), and hydroquinone (p-HQ). The results showed that the standard electrode potential of half reaction for p-QI and p-AP was 0.743 V at the B3LYP/6-31G(d, p) level and 0.755 V at the HF/6-31G(d, p) level. The standard electrode potentials computed at the B3LYP/6-31G(d, p) and HF/6-31G(d, p) levels were close to their experimental values. The article is published in the original.  相似文献   

10.

The molecular structure, conformational equilibria, vibrational spectra and molecular force field of 1-methyl-2-(2′-pyridyl)benzimidazole have been determined at the HF, MP2 and DFT/(B3LYP, BVP86) levels with 6-31+G(d,p) and TZVP basis sets. The torsional potentials for the rotation around the C1–C2 pivotal bond have been calculated at the B3LYP/6-31+G(d,p) and BVP86/TZVP levels of theory for gaseous and aqueous 1-methyl-2-(2′-pyridyl)benzimidazole. FT-Raman (3500–10 cm?1) and FT-IR (3900–400 cm?1) spectra of solid 1-methyl-2-(2′-pyridyl)benzimidazole have been recorded and interpreted on a base of calculated potential energy distribution. The results of the experimental and theoretical study of vibrational spectra and molecular structure of 1-methyl 2-(2′-pyridyl)benzimidazole are considered in comparison with similar data for 2-(2′-pyridyl)benzimidazole.

  相似文献   

11.
In this work, the experimental and theoretical spectra of nicotinamide (C6H6N2O) are studied. FT-IR and FT-Raman spectra of title molecule in the liquid phase have been recorded in the region 4000–100 cm?1. The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree–Fock and density functional method (B3LYP) with the 6-31+G*(d, p) and 6-31++G* (d, p)basis set. The vibrational frequencies have been calculated and scaled values have been compared with the experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found in good agreement. The DFT-B3LYP/6-31++G (d, p) calculations have been found are more reliable than the ab initio HF/6-31+G (d, p) calculations for the vibrational study of nicotinamide. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands due to the substitutions in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

12.
Vibrational analysis of tellurium tetrachloride, TeCl4, was performed with Hartree–Fock (HF), MP2, and generalized gradient approximation density functional theory (DFT) methods supplemented with polarized double-zeta split valence (DZVP) basis sets and relativistic effective core potentials (RECP) of Hay and Wadt. The molecular geometry is best reproduced at the HF and MP2/RECP+DZVP [polarized Hay and Wadt RECP for Te and 6–31G(d) basis set for Cl] levels of theory. The DFT methods gave rise to poorer results, especially those using Becke's 1988 exchange functional. Generally, the vibrational frequencies calculated by the MP2 and B3-type DFT methods with the all electron and RECP+DZVP basis sets as well as at the HF/RECP level were in satisfactory accord with the experimental data. The agreement was good enough to assist the assignment of the measured vibrational spectra. The best agreement with the experimental vibrational frequencies was achieved with the scaled HF/RECP force field. Consistent results were obtained for the unobserved A24) fundamental, where the results of the best methods were within 4 cm−1. The best force fields were obtained with the following methods: Becke3–Lee–Yang–Parr and Becke3–Perdew/all electron basis, MP2 and Becke3-Perdew/RECP+DZVP, and HF/RECP. The methods using RECPs are advantageous for large-scale computations. The RECP basis set effectively compensates the errors of the HF method for TeCl4; however, it provides poor results with correlated methods. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 308–318, 1998  相似文献   

13.
Conformational analysis of cumene hydroperoxide PhCMe2OOH (1) has been carried out using the density functional methods B3LYP/6-31G(d,p) and B3LYP/6-311+G(3df,2p). Ignoring rotation of methyl groups, molecule 1 has seven conformers differing in orientation of the — CMe2OOH fragment relative to the benzene ring and in mutual position of atoms in this fragment. The molecular structures, relative energies, and statistical distribution of the conformers were determined, and intramolecular rotational barriers were estimated. The enthalpies of formation of all conformers of molecule 1 were calculated using two approximations with inclusion of zero-point vibrational energy and temperature correction. Calculations using the isodesmic reaction (IDR) scheme made it possible to reduce the systematic error of the determination of the enthalpy of reactions. The total enthalpy of formation of compound 1 calculated with inclusion of statistical distribution of rotamers equals −19.7±3.6 kcal mol−1. The combination of the B3LYP/6-31G(d,p) approximation and the IDR scheme gives fairly accurate results (relative error is ±0.4 kcal mol−1) as compared to those obtained with the extended basis set 6-311+G(3df,2p). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1157–1164, June, 2008.  相似文献   

14.
Structure and Properties of the Methyltetrafluorophosphate Anion, [CH3PF5] Methyltetrafluorphosphorane reacts with the fluorides NaF, KF, CsF, and (CH3)4NF with formation of the corresponding methylpentafluorophosphates. In case of the K and Cs salts K[CH3PF5] · CH3CN and Cs[CH3PF5] · CH3CN, respectively, are formed using acetonitrile as solvent. The salts are characterized by NMR, IR and Raman spectroscopy. The vibrational frequencies are compared with ab initio calculated data (RHF/6‐31+G*). The RHF/6‐31+G* calculation yields for the almost octahedral anion bond distances of d(PFeq) = 163.7 pm, d(PFax) = 162.0 pm, and d(PC) = 184.8 pm.  相似文献   

15.
Different orientations of P(O) versus C(O) in P(O)NHC(O) skeleton have been discussed in two new phosphorus(V)-nitrogen compounds with formula XP(O)Y and XP(O)Z2 where X = NHC(O)C6H4(4-F) and Y = NHCH2C(CH3)2CH2NH (1), Z = NHC6H4(4-CH3) (2). Compound 1 is the first example of an aliphatic diazaphosphorinane with a gauche orientation which has been studied by X-ray crystallography; the P=O bond is in the equatorial position of the ring. Both compounds show n J(F,C) and m J(F,H) coupling constants (n = 1, 2, 3 and 4; m = 3 and 4) and 3 J(P,C) > 2 J(P,C). Quantum chemical calculations were performed with HF and Density Functional Theory (DFT) methods using 6−31+G(d,p) basis set. A tentative assignment of the observed vibrational bands for these molecules is discussed. Compound 1 shows a deshielded C atom of the carbonyl moiety (in 13C NMR spectrum) relative to that of 2, which is supported by IR spectroscopy in which the considerably lower C=O frequency is observed for 1. Comparing the X-ray crystallography and IR spectra of 1 and 2 shows that the acyclic compound 2, containing P=O and C=O bonds in an anti position, are involving in a stronger N–H···O=P hydrogen bond in crystal network. This leads to a weaker P=O and NC(O)NHP(O)–H bonds and stronger N···O interaction. The Namide–H is involved in an intramolecular N–H···O hydrogen bond.  相似文献   

16.
Two 5-tetrazolylazo-8-hydroxyquinoline (TTHQ) Zn2+ and Mn2+ complexes, [Zn(TTHQ)(en)]·2H2O (en = ethylenediamine) (1) and [Mn2(TTHQ)2(H2O)6]·2H2O (2), were synthesized and characterized by single-crystal X-ray diffraction analysis. Stacking (ππ) and hydrogen-bonding interactions are responsible for the stabilization of the supramolecular structures. UV–vis spectral changes and photoluminescent properties of TTHQ, 1 and 2 were investigated and a red emission was found. The hydrogen-bonding interaction energies in 1 and 2 were calculated using density functional theory at the WB97XD/6-31++G level.  相似文献   

17.
A new series of coumarin derivatives (2–5) was synthesized by reaction of phenylsulfonylacetonitrile (1) with 2-hydroxy-1-naphthaldehyde and/or salicyaldehyde. Compounds 3 and 5 were converted to the corresponding phenanthridine analogs 6 and 7, respectively. Compound 9a was treated with different dienophiles to furnish the endo adducts of compounds (11ad) rather than the exo adducts. Ab initio calculations at the Hartree-Fock (HF) level using the basis set 6-31 G (d,p) was used to study and validate the stereospecificity of compounds 11a–d and showed clearly that the endo adducts were thermodynamically favorable. PM3 parameters also showed that the endo adducts are thermodynamically and kinetically favorable. Tetrahydrobenzochromenone (11) was synthesized and allowed to react with different aromatic diazonium salts to give the corresponding 4-arylazo derivatives (13), which were converted to the corresponding diazaindenophenanthrene derivatives (14) by reaction with o-diamines.  相似文献   

18.
GIAO/HF and DFT methods were utilized to predict the 13C chemical shifts of substituted ketenimines. GIAO HF/6–311+G(2d,p) and B3LYP/6–311+G(2d,p) methods were applied on the optimized B3LYP/6–31G(d) geometries and 13C chemical shifts of Cα and Cβ of substituted ketenimines were correlated with group electronegativities. HF and DFT calculations indicated that increasing substituent group electronegativity leads to increasing chemical shift of Cβ of substituted ketenimines, whereas the Cα values decrease. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The concentration dependence of the normalized (to the total number of moles of the components per liter) absorbance of HF solutions in DMF in ratios from 1: 12 to 7: 1 was analyzed. In the binary liquid system (BLS) under consideration, there are molecular complexes with stoichiometric ratios of 1: 1 and 10: 1 along with heteroassociates (HA) with the HF to DMF ratio of 4: 1, which have been found earlier. For each HA, the concentration range, in which HA is formed in BLS, was estimated, and the positions of the stretching bands of HF were determined. The optimal configurations and the vibrational frequencies of the molecular complexes (HF) m ·(DMF) n (m = 1, 2, 4, 8; n = 1, 2) with different topologies were calculated using the density functional theory (B3LYP/6-31++G(d,p)). The relative stability and structural features of the latter complexes were investigated. The complex formation in the HF-DMF system was analyzed. The structures of HA with stoichiometric ratios of 1: 1 and 4: 1 were determined by comparing the results of calculations and experimental data.  相似文献   

20.
《Solid State Sciences》2012,14(4):476-487
The Fourier transform infrared (FT-IR) and Fourier transform Raman (FTR) spectra of 4-amino-3(4-chlorophenyl) butanoic acid were recorded in the regions 4000–400 cm−1 and 4000–100 cm−1, respectively, in the solid phase. Molecular electronic energy, geometrical structure, harmonic vibrational spectra, infrared intensities and Raman scattering activities, highest occupied molecular orbital, lowest unoccupied molecular orbital energy, energy gaps and thermodynamical properties such as zero-point vibrational energies, rotational constants, entropies and dipole moment were computed at the Hartree–Fock/6-31G(d,p) and three parameter hybrid functional Lee–Yang–Parr/6-31G(d,p) levels of theory. The vibrational studies were interpreted in terms of potential energy distribution (PED). The results were compared with experimental values with the help of scaling procedures. Most of the modes have wave numbers in the expected range and are in good agreement with computed values. The first order hyperpolarizability (βtotal) of this molecular system and related properties (β, μ, 〈α〉 and Δα) are calculated using HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods based on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-31G(d,p) method. The results show that electron density (ED) in the σ1 and π1 antibonding orbitals and second-order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号