首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
Rate constants for the low-pressure unimolecular decomposition of ONBr and ONCl in an argon bath have been determined at temperatures in the vicinity of 1000°K. Both molecules exhibit the usual depression of the observed activation energy below the bond dissociation energy. The Arrhenius expressions obtained are (units of cc mole?1 sec?1): Treatment of the data by the classical RRK theory yields s ? 2.7 ± 1 for ONCl and 3.0 ± 0.6 for ONBr. Coupling the shock tube results for ONCl with lower-temperature data from Ashmore and Burnett [3], one obtains s ? 2.5 ± 0.5 and λ ≈? 1. If it is assumed that s is also 2.5 for ONBr, then one finds the surprising (but tentative) result that λONCl? Ar/λONBr? Ar ≈? 3 to 4.  相似文献   

2.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

3.
Tertiary-amyl amine has been decomposed in single-pulse shock-tube experiments. Rate expressions for several of the important primary steps are This leads to D(CH3? H) – D(NH2? H) = ?10.5 kJ and D[(CH3)3C? H] – D[(CH3)2NH2C? H] = + 6 kJ. The present and earlier comparative rate single-pulse shock-tube data when combined with high-pressure hydrazine decomposition results-(after correcting for fall off effects through RRKM calculations) gives where kr(…) is the recombination rate involving the appropriate radicals. This suggests that in this context amino radical behavior is analogous to that of alkyl radicals. If this agreement is exact, then Rate expressions for the primary step in the decomposition of a variety of primary amines have been computed. In the case of benzyl amine where data exist the agreement is satisfactory. The following differences in bond energies have been estimated:   相似文献   

4.
4-Methylhexyne-1, 5-methylhexyne-1, hexyne-1, and 6-methylheptyne-2 have been decomposed in comparative-rate single-pulse shock-tube experiments. Rate expressions for the initial decomposition reactions at 1100°K and from 2 to 6 atm pressure are In combination with previous results, rate expressions for propargyl C? C bond cleavage are related to that for the alkanes by the expression These results yield a propargyl resonance energy of D(nC3H7-H) – D(C3H3-H) = 36 ± 2 kJ, in excellent agreement with a previous shock-tube study. They also lead to D(CH3C≡CCH2-H) – D(C3H3-H) = 0.6 ± 3 kJ, D(sC4H9-H) – D(iC3H7-H) = 0 ± 3 kJ, D(iC4H9-H) – D(nC3H7-H) = 2 ± 3 kJ, and D(nC3H7-H) – D(iC3H7-H) = 13.9 ± 3 kJ (all values are for 300°K). The systematics of the molecular decomposition process are explored.  相似文献   

5.
6.
A transformation exists which allows the general Riccati equation to be written in a simpler form: The transformed equation has the equivalent nonlinear Hammerstein integral equation if the kernel N(r, r′) satisfies three conditions: and and A solution of the nonlinear integral equation is devised by repeatedly integrating the Hammerstein equation. During this procedure the kernel generates an equation that contains only coefficients of β(r)0 and β(r)1. As a result, after truncating at the end of the nth cycle, it is a simple matter to write down a Padé-type approximation: all coefficients in this approximation are capable of being evaluated in terms of simple algebraic formulations of P(r), R(r), and integrals over P(r). The zeroes of the denominator of the Padé-type approximation define the points where singularities occur in β(r).  相似文献   

7.
The photoelectron spectra of 1,5-cyclooctadiyne ( 2 ) and of 1,6-dithiacyclodeca-3,8-diyne ( 3 ) have been recorded. The first four ( 2 ) or six ( 3 ) PE. bands have been assigned as follows; in increasing order of ionization potentials: The relative sequence and the positions of the PE. bands are explained in terms of through-bond and through-space interactions between the basis π-orbitals and σ-orbitals of appropriate symmetry behaviour. An analysis of the PE. spectroscopic data for cyclooctyne ( 1 ) and for ( 2 ) indicates that a cis-bend of the acetylene moiety by θ < 20° leads to a split in energy of the in-plane and out-of-plane basis π-orbitals which is smaller than ∽ 0.2 eV. This is in agreement with the predictions derived from semiempirical models (MINDO/2, SPINDO) and qualitative orbital arguments. However, it is shown by using orbital localization procedures, that the rationales underlying the two semiempirical models differ significantly.  相似文献   

8.
The overall reaction (1) occurs readily in the gas phase, even at room temperature in the dark. The reaction is much faster than the corresponding process and does not involve the normal bromination mechanism for gas phase reactions. Reaction (1) is probably heterogeneous although other mechanisms cannot be excluded. The overall reactions (1) (2) proceed, for all practical purposes, completely to the right-hand side in the vapor phase. The expected mechanism is (3) (4) (5) (6) (7) where reaction (3) is initiated thermally or photochemically. Reaction (4) is of interest because little kinetic data are available on reactions involving abstraction of halogen by halogen and also because an accurate determination of the activation energy E4 would prmit us to calculate an acccurate value of the bond dissociation energy D(CH3? I).  相似文献   

9.
2,4-Dimethylhexene-l has been decomposed in single-pulse shock tube experiments. Rate expressions for the initial reactions are and sec?1 at 1.5–5 atm and 1050°K. This leads to ΔH°f300 (CH2 = C(CH3)CH2) = 124 kJ/mol, or an allylic resonance energy of 50 kJ/mol. Rate expressions for the decomposition of the appropriate olefins which yield isobutenyl radicals and methyl, ethyl, isopropyl, n-propyl, t-butyl, and t-amyl radicals, respectively, are presented. The rate expression for the decomposition of isobutenyl radical is (at the beginning of the fall-off region). For the combination of isobutenyl and methyl radicals, the rate constant at 1020°K is Combination of this number and the calculated rate expression for 2-methylbutene-1 decomposition gives S. (1100) = 470 J/mol °K. This yields It is demonstrated that an upper limit for the rate of hydrogen abstraction by isobutenyl from toluene is   相似文献   

10.
Kinetic studies of oxidation of L(?) arginine, L(+) ornithine, L(?) histidine, L(?) tryptophan, L(?) threonine have been carried out in alkaline medium. The reaction showed an inverse fractional order in OH? and first-order dependence on both amino acid and chloroamine-T concentration. The effect of varying ionic strength (KCl) on the rate of oxidation is negligible. A general mechanism for the oxidation has been suggested by considering interaction between anionic species of amino acid and p-toluene-sulphochloramide. The effect of solvent and temperature have been also discussed. The fractional order obtained in OH? is due to the fact that a fraction of overall reaction proceeds via an alternative OH? independent path. The combined rate law in accordance to observed kinetics is derived as The rate constants predicted by the derived rate law as the concentration of OH? ions change, are in excellent agreement with the observed rate constants, thus further justifying these rate laws and hence the proposed mechanistic schemes.  相似文献   

11.
3JC′C′ and 3JHNHα couplings are related to the intervening backbone torsion angle ${\varphi }$ by standard Karplus equations. Although these couplings are known to be affected by parameters other than ${\varphi }$ , including H‐bonding, valence angles and residue type, experimental results and quantum calculations indicate that the impact of these latter parameters is typically very small. The solution NMR structure of protein GB3, newly refined by using extensive sets of residual dipolar couplings, yields 50–60 % better Karplus equation agreement between ${\varphi }$ angles and experimental 3JC′C′ and 3JHNHα values than does the high‐resolution X‐ray structure. In intrinsically disordered proteins, 3JC′C′ and 3JHNHα couplings can be measured at even higher accuracy, and the impact of factors other than the intervening torsion angle on 3J will be smaller than in folded proteins, making these couplings exceptionally valuable reporters on the ensemble of ${\varphi }$ angles sampled by each residue.  相似文献   

12.
The radical cations and the radical anions of 1,6-dithiapyrene ( 1 ) and 3,10-dithiaperylene ( 2 ) as well as those of three further Weitz-type S-donors 3 , 4 , and 5 have been studied by ESR spectroscopy. The experimental findings for (widths and behaviour on saturation of hyperfine lines) suggest that the ground state of this radical anion is effectively degenerate. With the exception of , the ESR studies of all radical ions could be complemented by the use of the ENDOR and general TRIPLE resonance techniques. In addition to proton hyperfine data, 33S coupling constants have been determined for (0.53mT), (0.46mT), and (0.34mT); they are in agreement with the predicted substantial π-spin populations at the S-atoms.  相似文献   

13.
The various orthogonality and sum rules which the 6j and 3jm symbols satisfy are sufficient to obtain the algebraic formulas for these symbols for SO3 ? SO2. Character theory enters in that the j's and m's occurring in the various sums are given by the triangle rule together with information on the symmetrized product and the branching, SO3 ? SO2, The resulting calculation is somewhat simpler, algebraically speaking, than previous calculations and has the pedagogical advantage that only the concept of an irreducible representation of a group is required, instead of the more elaborate concept of ladder operators.  相似文献   

14.
The mechanism and initial rates of decomposition of cyclohexane and 1-hexene have been determined from single-pulse shock-tube experiments. The main initial processes involve isomerization of cyclohexane to 1-hexene, followed by decomposition of 1-hexene. From comparative rate experiments the following rate expressions have been derived: The 1-hexene bond-braking reaction leads to an allylic resonance energy of 42.7 kJ and a heat of formation of allyl radicals of 176.6 kJ (300°K). There appear to be general relations relating the rate expressions for the decomposition of alkynes, alkanes, and alkenes. Studies on the induced decomposition of cyclohexane have also been carried out.  相似文献   

15.
The kinetics of the gas-phase reaction of CH3F with I2 have been studied spectrophotometrically from 629 to 710 K, and were determined to be consistent with the following mechanism: (1) A least-squares analysis of the kinetic data taken in the initial stages of reaction resulted in where θ = 4.575T/1000 kcal/mol. The errors represent one standard deviation. The experimental activation energy E4 = 30.8 ± 0.2 kcal/mol was combined with the assumption E3 = 1 ± 1 kcal/mol and estimated heat capacities to obtain The enthalpy change at 298 K was combined with selected thermochemical data to derive The kinetic studies of ?HF2 and CH2F2 have been reevaluated to yield These results are combined with literature data to yield the C? H, C? F, and C? Cl bond dissociation energies in their respective fluoromethanes, and the effect of α-fluorine substitution is discussed.  相似文献   

16.
Four titanium silanolates Ti(OSiR2R′)4 (1, R = Ph, R′ = tBu; 2, R = R′ = Ph; 3, R = R′ = iPr; 4, R = Me, R′ = tBu) were synthesised starting from Ti(OiPr)4 and the corresponding silanol, and their thermally induced decomposition was studied. Colourless single crystals of Ti(OSiPh Bu) CHCl C7H8 ( CHCl C7H8) were obtained from a mixture of chloroform and toluene (1:1) at ?20 °C. The compound crystallizes in the space group R3 c with Z = 18. The metal atom shows an almost ideal tetrahedral coordination, as is demonstrated by the O? Ti? O angles of 108.4(1)–111.1(1)°. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Cyclopentane has been decomposed in comparative-rate single-pulse shock-tube experiments. The pyrolytic mechanism involves isomerization to 1-pentene and also a minor pathway leading to cyclopropane and ethylene. This is followed by the decomposition of 1-pentene and cyclopropane. The rate expressions over the temperature range of 1000°–1200° K are Details of the cyclopentane decomposition processes are considered, and it appears that if the trimethylene radical is an intermediate, then ΔHf(trimethylene) ≤ 280 kJ/mol at 300°K.  相似文献   

18.
The title reaction has been investigated in the temperature range 667–715K. The only reaction products were trifluorosilyl iodide and hydrogen iodide. The rate law was obeyed over a wide range of iodine and trifluorosilane pressures. This expression is consistent with an iodine atom abstraction mechanism and for the step log k1(dm3/mol·sec) = (11.54 ± 0.17) ? (130.5 ± 2.2 kJ/mol)/RT In 10 has been deduced. From this the bond dissociation energy D(F3Si? H) = (419 ± 5) kJ/mol (100.1 kcal/mol) is obtained. The kinetic andthermochemical implications of this value are discussed.  相似文献   

19.
The translational and orientational potential energy surfaces (PESs) of n‐alkanethiols with up to four carbon atoms are studied for (${\sqrt {(3)} }$ ×${\sqrt {(3)} }$ )R30° self‐assembled monolayers (SAMs). The PESs indicate that methanethiol may form SAM structures that are not accessible for long‐chain thiols. The tilt of the thiol molecules is determined by a compromise between the preferred binding geometry at the sulfur atom and the steric requirements of the alkane chains. The Au? S bond lengths, offset from the bridge position (brg), and the Au? S? C bond angles result in tilt angles of the S? C bond in the range of 55–60°. As DFT/generalized gradient approximation systematically underestimates chain–chain interactions, the binding energies are corrected by comparison to MP2 interaction energies of alkane dimers in SAM‐like configurations. The resulting thiol binding energies increase by approximately 1 kcal mol?1 per CH2 group, which results in a substantial stabilization of long‐chain SAMs due to chain–chain interactions. Furthermore, as the chain length increases, the accessible range of backbone tilt angles is constrained due to steric effects. The combination of these two effects may explain why SAM structures with long‐chain thiols exhibit higher order in experiments. For each thiol two favorable SAM structures are found with the sulfur head group at the fcc‐brg and hcp‐brg positions, respectively. These domains may coexist in thermal equilibrium. In combination with the symmetry of the gold (111) surface, this raises the possibility of up to six different domains on single‐crystal terraces. Reconstructions by an adatom or vacancy of ethanethiol SAMs with (${\sqrt {(3)} }$ ×${\sqrt {(3)} }$ )R30° lattice are also studied using PES scans. The results indicate that adsorption of thiols next to a vacancy is favorable and may lead to point defects inside SAMs.  相似文献   

20.
Cyclopropyl cyanide isomerizes in the gas phase at 660°–760°K and 2–89 torr to give mainly cis- and trans-crotonitrile and allyl cyanide, with traces of methacrylonitrile. The reactions are first order, homogeneous, and unaffected by the presence of radical-chain inhibitors. The rate constants are given by Overall: cis-Crotonitrile: trans-Crotonitrile: Allyl cyanide: where the error limits are standard deviations. On the basis of a biradical mechanism, it is deduced that the ? CH? CN radical center is resonance stabilized by ca. 30 kJ mole?1. Approximate equilibrium data are given for interconversion of the 1- and 3-cyanopropenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号