首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 773 毫秒
1.
通过冷凝-回流方式制备可见近红外光响应直接Z型LaNiO3/CdS纳米复合物,在对其进行物理化学表征后将其应用于光解水产氢反应。在可见光照射下,LaNiO3/CdS光催化剂在5 h的H2产量达到737 μmol,其H2产量是CdS的4.3倍(172 μmol)。光电化学测试证实,LaNiO3/CdS之间异质结的构筑能有效地促进光生载流子在界面的迁移、分离,从而促进其光解水产氢效率和稳定性的提高。同时随着近红外光的引入,其产氢活性提高至996 μmol。在上转换荧光测试中,LaNiO3在808 nm光激发下在406和628 nm显示出发射荧光,这表明其能在近红外光照射下产生光生载流子,从而进一步提高其光解水产氢效率。  相似文献   

2.
TiO2/石墨烯复合材料的合成及光催化分解水产氢活性   总被引:1,自引:0,他引:1  
利用石墨粉根据Hummers氧化法制得氧化石墨,并进一步还原得到石墨烯。采用溶胶-凝胶法以钛酸四丁酯和石墨烯为起始材料制备了二氧化钛(TiO2)和石墨烯的复合光催化材料。研究了该复合材料在紫外-可见光以及可见光条件下的光催化分解水制氢活性。结果表明,紫外-可见光照射下,TiO2/石墨烯复合光催化材料的光催化分解水产氢速率为8.6 μmol·h-1,远大于同条件下商业P25的产氢速率 (4.5 μmol·h-1),光解水产氢活性提高了近2倍;可见光下光照3 h,TiO2/石墨烯复合材料的光催化分解水产氢量约为0.2 μmol。  相似文献   

3.
通过冷凝-回流方式制备可见近红外光响应直接 Z型 LaNiO3/CdS纳米杂化物,在对其进行物理化学表征后将其应用于光解水产氢反应。在可见光照射下,LaNiO3/CdS光催化剂在5 h的H2产量达到737 μmol,其H2产量是CdS的4.3倍(172 μmol)。光电化学测试证实,LaNiO3/CdS之间异质结的构筑能有效地促进光生载流子在界面的迁移、分离,从而促进其光解水产氢效率和稳定性的提高。同时随着近红外光的引入,其产氢活性提高至996 μmol。在上转换荧光测试中,LaNiO3在808 nm光激发下在406和628 nm显示出发射荧光,这表明其能在近红外光照射下产生光生载流子,从而进一步提高其光解水产氢效率。  相似文献   

4.
采用浸渍、热分解的方法在TiO2纳米颗粒上负载CuO制备得到光催化剂CuO/TiO2。研究了以乙二醇为电子给体,在CuO/TiO2上光催化分解水制氢的反应过程。重点分析考察了影响光催化产氢速率的因素如CuO的负载量、反应时间、光催化剂用量、乙二醇初始浓度等,同时对光催化制氢的反应机理进行了初步探讨。结果表明,氙灯光源模拟太阳光下最佳产氢速率达到604.5 μmol·h-1·g-1;CuO/TiO2催化剂改善了光吸收性能、减少了光生载流子的复合速率,CuO可以起到传输电子的作用;乙二醇为电子给体很可能经过羟基乙醛进一步被氧化。  相似文献   

5.
采用浸渍、热分解的方法在TiO2纳米颗粒上负载CuO制备得到光催化剂CuO/TiO2。研究了以乙二醇为电子给体,在CuO/TiO2上光催化分解水制氢的反应过程。重点分析考察了影响光催化产氢速率的因素如CuO的负载量、反应时间、光催化剂用量、乙二醇初始浓度等,同时对光催化制氢的反应机理进行了初步探讨。结果表明,氙灯光源模拟太阳光下最佳产氢速率达到604.5μmol·h-1·g-1;CuO/TiO2催化剂改善了光吸收性能、减少了光生载流子的复合速率,CuO可以起到传输电子的作用;乙二醇为电子给体很可能经过羟基乙醛进一步被氧化。  相似文献   

6.
利用阳极氧化法在钛金属基体表面制备一层TiO2纳米管阵列薄膜, 然后通过水热反应在TiO2纳米管上负载CdS纳米粒子, 形成CdS/TiO2纳米管的复合结构。利用SEM、XRD、XPS、UV-Vis等手段对其形貌和结构进行表征。进一步考察了CdS/TiO2纳米管的光电性能和光催化活性, 结果表明, 相比于TiO2纳米管, CdS/TiO2纳米管复合结构在紫外光和可见光下都具有更好的光催化活性及光电性能。  相似文献   

7.
本文通过水热辅助水浴法制备了CdIn2S4/ZnO复合材料,并采用XRD、XPS、UV-Vis/DRS、SEM、N2吸附-脱附等测试技术对复合材料的晶形结构和表面物理化学性质进行了表征。结果表明,相比于单体ZnO,微球形复合材料CdIn2S4/ZnO晶型结构更加优异,孔径分布更加均匀,比表面积明显增大,其光吸收范围拓展至可见光区。多模式光催化降解染料亚甲基蓝的实验结果显示,微球形复合材料CdIn2S4/ZnO的光催化活性优于单体ZnO和CdIn2S4,其中CdIn2S4与ZnO的比例为1:5时活性最好,其对不同有机污染物均具有光降解能力;另外,光解水制氢实验结果显示,在8 h内产氢量达到310.2 μmol/g,表明该复合材料具有优异的光解水制氢性能。  相似文献   

8.
以阳极氧化法在纯钛表面制备了高度有序的TiO2纳米管阵列,并通过SEM观察其表面形貌。采用双室光电化学池制氢体系,利用太阳光照TiO2产生的光电压与双室电解液pH差产生的化学偏压的协同效应,不施加外加电压,可直接在阴极室还原制取氢气。通过在碱性电解液中添加乙二醇为电子给体,将光解水制氢与有机物的降解耦合为一体,提高太阳能的利用率,同时考察了阳极室电解液中添加不同含量乙二醇对TiO2纳米管光阳级的光电化学性能及产氢量的影响。实验结果表明,乙二醇的添加降低了光生电子-空穴对的复合几率,使TiO2纳米管的光电流、光电压、产氢量得到显著提高。当添加乙二醇的浓度为10vol%时光电流达到13.7mA·cm-2,无外加电压条件下,双室光电化学池中的产氢速率最高达到3.8μmol·min-1·cm-2。  相似文献   

9.
采用水热法和低温浸渍法制备了电子助剂还原石墨烯(rGO)和界面活性位点Ni(Ⅱ)共修饰的高效TiO2光催化剂(简称Ni(Ⅱ)/TiO2-rGO)。制氢性能测试结果表明:相比于TiO2和单独还原石墨烯复合的TiO2,经还原石墨烯与Ni(Ⅱ)协同修饰后的TiO2表现出更高的光催化制氢性能。其中,Ni(Ⅱ)/TiO2-rGO(0.1 mol·L-1)具有最高制氢性能,制氢速率达到77.0 μmol·h-1,分别是TiO2(16.4 μmol·h-1)和TiO2-rGO(28.0 μmol·h-1)的4.70倍和2.75倍。还原石墨烯助剂与Ni(Ⅱ)活性位点协同增强制氢性能的原理是:还原石墨烯作为电子助剂可以快速捕获和传输电子,Ni(Ⅱ)作为界面活性位点可以从溶液中捕获H+,提高界面反应速率,2种助剂协同作用加快了TiO2上的光生电子-空穴对的有效分离。  相似文献   

10.
利用共沉淀法和固相法制备出SrZr0.95Y0.05O3微粒,采用溶胶包覆法使其与含氮TiO2溶胶复合,并原位光沉积Pt颗粒组装成异质结复合催化剂,采用XRD、TG-DTA、紫外可见漫反射光谱(UV-Vis DRS)和荧光光谱(FS)等技术对其进行了表征和分析,以草酸为牺牲剂,模拟太阳光下光催化产氢为探针,评价了催化剂的光催化活性。研究了不同氮源剂、烧结温度、载铂含量对催化剂光催化产氢活性的影响。结果表明,在模拟太阳光照射下,单独的SrZr0.95Y0.05O3和TiO2几乎不产生氢气;而将两者采用溶胶包覆法复合并掺氮后,所制备出的复合催化剂表现出一定程度的产氢活性,在氮源剂为三乙胺、400 ℃焙烧下具有最佳的产氢活性,催化活性的提高源于复合催化剂中形成的异质结抑制了光生载流子的快速复合以及氮掺杂引起对可见光的响应;进一步负载铂后,其产氢量得到大幅度的提高,其最佳负载量为1wt%,6 h内产氢量达到12.5 mmol,是未负载的样品的22倍多,这是由于铂负载进一步抑制了光生载流子的复合,从而大大地提高了光催化活性。  相似文献   

11.
Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, diffuse reflectance spectroscopy, and photoelectrochemical and photoluminescence spectroscopy tests. The photocatalytic hydrogen evolution activities of the samples were evaluated under visible light irradiation. The resulting MoS2/CdS heterojunctions exhibit a much improved photocatalytic hydrogen evolution activity than that obtained with CdS and MoS2. In particular, the optimized MC-5 (5 at.% MoS2/CdS) photocatalyst achieved the highest hydrogen production rate of 250.8 μmol h-1, which is 28 times higher than that of pristine CdS. The apparent quantum efficiency (AQE) at 420 nm was 3.66%. Further detailed characterizations revealed that the enhanced photocatalytic activity of the MoS2/CdS heterojunctions could be attributed to the efficient transfer and separation of photogenerated charge carriers resulting from the core-shell structure and the close contact between MoS2 nanosheets and CdS single-crystal nanorods, as well as to increased visible light absorption. A tentative mechanism for photocatalytic H2 evolution by MoS2/CdS heterojunctions was proposed. This work will open up new opportunities for developing more efficient photocatalysts for water splitting.  相似文献   

12.
The development of the photocatalytic production of hydrogen from water splitting has attracted immense attention in recent years. CdS is a potential photocatalyst with a visible light response, though it still suffers from a limited activity for hydrogen production due to the fast recombination of photo-induced electron/hole pairs and the low reaction rate of hydrogen evolution on the surface. Studies on the effect of CdS surface structure and properties on hydrogen production are still very limited. In this work, we prepared three CdS nanocrystals with different morphologies: long rod, short rod, and triangular plate. The prepared samples were well characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). From the results of TEM, XRD and XPS, we find that the three CdS nanocrystals with different morphologies were successfully synthesized. From the PL spectra, we conclude that the area of exposed nonpolar surface and degree of surface defects increase with an increase in aspect ratio. We also performed the photocatalytic hydrogen production reaction using the three CdS crystals. Long rod-like CdS (lr-CdS) exhibits the highest photocatalytic activity, with a hydrogen production rate of 482 μmol·h-1·g-1, which is 2.6 times that of short rod-like CdS (sr-CdS) (183 μmol·h-1·g-1) and 8.8 times that of triangular plate-like CdS (tp-CdS, 55 μmol h-1·g-1). It is found that lr-CdS shows a higher hydrogen production rate than sr-CdS and tp-CdS. We find that the hydrogen production rate is related to the degree of surface defects. Surface defects can trap the photo-induced electrons/holes, thus decreasing their probability of recombination. In addition, these defects can be used to anchor Pd particles to form a heterojunction structure that facilitates the separation of photo-induced charges. Therefore, we also compared three CdS/Pd nanocrystals synthesized with the three abovementioned morphologies with respect to hydrogen production. With 1% (w, mass fraction) Pd, the hydrogen production rate was greatly enhanced compared to all the CdS catalysts. Compared to the unpromoted CdS, the reaction rate is enhanced 43.1, 10.7 and 6.0 times over those of sr-CdS, lr-CdS and tp-CdS, respectively. Notably, the hydrogen production rate with short rod-like CdS/Pd reaches 7884 μmol·h-1·g-1, which can be favorably compared with the ever-increasing values reported in the literature. Hopefully, this work provides knowledge on the effect of crystal surface structure and properties on photocatalysis.  相似文献   

13.
采用高温煅烧法、 原位生长法和光还原法分三步制备出双功能复合光催化剂g-C3N4/CdS/Ni. 材料中CdS的引入可以增强光生电子和空穴的分离效率, Ni可以进一步提高光致产氢速率. 在以三乙醇胺(TEOA)为电子给体的水溶液中对所制备的材料进行了催化产氢性能测试, 并对材料中CdS的含量进行了优化. 结果表明, 25% (质量分数)CdS负载量的复合材料催化产氢性能最佳, 其催化产氢速率为4134.5 μmol·g-1·h-1, 是 g-C3N4/Ni催化产氢速率的115倍. 且Ni是一种良好的质子催化剂. 在此基础上, 以5-羟甲基糠醛(HMF)替代TEOA作为体系的电子给体, 其可以被选择性地催化氧化为增值化学品2, 5-二甲酰基呋喃(DFF). 当体系中HMF的转化率为82.3%, DFF的选择性为69.4%时, DFF的产率(57.2%)达到最高, 体系中H2的产量为 51.8 μmol/g. g-C3N4/CdS/Ni复合材料可以在同一体系中进行催化光致产氢和HMF的选择性氧化.  相似文献   

14.
Overall water photo-splitting is a prospective ideal pathway to produce ultra-clean H_2 energy by semiconductors.However,the band structure of many semiconductors cannot satisfy the requirement of H_2 and O_2 production at the same time.Herein,we illustrate that carbon dots(CDs)/Bi_2 WO_6 photocatalyst with compensatory photo-electronic effect has enhanced activity for overall water photo-splitting without any sacrificial agent.In this complex photocatalytic system,the photo-potential provided by CDs makes the CDs/Bi_2 WO6(C-BWO) composite could satisfy the band structure conditions for overall water photo-splitting.The C-BWO composite(3 wt% CDs content) exhibits optimized hydrogen evolution(oxygen evolution) of 0.28 μmol/h(0.12 μmol/h) with an approximate 2:1(H_2:O_2) stoichiometry at normal pressure.We further employed the in-situ transient photovoltage(TPV) technique to study the photoelectron extraction and the interface charge transfer kinetics of this composite catalyst.  相似文献   

15.
目前,在可见光照射下光催化产氢是一条解决能源短缺的理想途径.该途径实现工业化的两个关键因素是得到低成本的光催化剂和高的产氢效率.非贵金属助催化剂代替贵金属可大大降低光催化剂的成本.通过简单的方法大规模合成并组装半导体和非贵金属助催化剂以形成复合光催化剂可进一步降低成本.本文采用大规模和低成本的共沉淀法合成了磷化物/CdS光催化剂,实现了光催化产氢.当负载CoP和Mo P助催化剂后,光催化产氢活性得到大幅度提高.其中CoP/CdS和Mo P/CdS的最佳产氢量分别为140和78μmol/h,并分别为CdS的7.0倍和4.0倍,分别为Pt/CdS的2.0倍和1.1倍.这说明磷化物CoP和Mo P是具有优良催化活性的低成本非贵金属助催化剂,可以代替贵金属助催化剂应用在光催化产H_2中.在制备磷化物/CdS时,先将两种磷化物反应原料分别在水热反应釜和马弗炉中煅烧合成前驱体,再分别在管式炉氮气和氢气氛围中进行磷化得到磷化物Mo P和CoP.然后,将得到的Mo P和CoP分别溶解在Cd(NO_3)_2·4H_2O溶液中,在搅拌状态下逐滴加入Na_2S溶液形成沉淀,即可得到复合物磷化物/CdS.CoP/CdS和Mo P/CdS的HRTEM观察显示,磷化物助催化剂与CdS半导体紧密结合,证明了共沉淀法制备助催化剂/半导体复合光催化剂的有效性.磷化物与CdS的紧密结合促进了光激发电子从CdS向磷化物转移,从而大大提高了光催化产氢活性.这项工作为低成本大规模制备光催化剂和光催化产H_2实现工业化提供了一条可行性思路.  相似文献   

16.
Multiwalled carbon nanotubes (MWCNTs) and ZnIn(2)S(4) composites were prepared by a facile hydrothermal method, which was used for hydrogen production under visible-light (λ≥ 420 nm) irradiation. The obtained MWCNTs/ZnIn(2)S(4) composites were characterized by X-ray diffraction (XRD), thermogravimetric and differential scanning calorimetry analyses (TG-DSC), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption spectra (DRS), Fourier transform IR spectroscopy (FTIR) and Photoluminescence spectra (PL). It was found that the MWCNTs were embedded into the interior of floriated ZnIn(2)S(4) microspheres. The effects of the composite ratio in the MWCNTs/ZnIn(2)S(4) on the photocatalytic activity for hydrogen production were investigated. The results show that the 3 wt% MWCNTs/ZnIn(2)S(4) composite reaches its maximum photocatalytic hydrogen production efficiency with an apparent quantum efficiency as high as 23.3% under 420 nm light irradiation. The significantly enhanced photoactivity for the present composite originates from the synergetic effect of its component intrinsic properties. A possible mechanism of the MWCNTs/ZnIn(2)S(4) composite as a photocatalyst for H(2) evolution was proposed.  相似文献   

17.
A new ZnS/CdS heterojunction is constructed through the direct sulfurization of a metal ions exchanged Zn/Cd-MOF precursor(MOF=metal-organic framework material). The composition, structure, morphology, photo-absorption and photoelectric performance of the ZnS/CdS are characterized by powder X-ray diffraction(PXRD), scanning electron microscope(SEM), transmission electron microscope(TEM), diffuse reflection spectrum(DRS), photoelectric current(PEC), electrochemical impedance spectroscopy(EIS) and photoluminescence(PL) technologies. Since the metal ions are highly orderly separated by the organic ligands and the inherent porosity of the Zn/Cd-MOF, the as-synthesized ZnS/CdS possesses a large surface area and intimate contact at the heterogeneous interface with uniform ZnS/CdS nanoparticles. The photocatalytic hydrogen evolution activity of the ZnS/CdS is investigated under visible light irradiation(λ ≥ 420 nm). It exhibits enhanced photocatalytic performance that the optimal ZnS/CdS achieves a maximum average hydrogen production rate of 2348 μmol·h-1·g-1. A possible electron transfer mechanism is therefore proposed by the analyses of the Mott-Schottky plots.  相似文献   

18.
马松  徐兴民  谢君  李鑫 《催化学报》2017,(12):1970-1980
光催化产氢技术是目前解决能源和环境问题的最有潜力的方法之一,因此制备安全高效的光催化剂已成为目前的研究热点.在目前研究的各种光催化剂中,CdS光催化剂因为具有较窄的带隙(2.4 eV)和合适的导带位置,所以在可见光催化产氢领域受到广泛关注.然而,光生电子/空穴对易复合和光腐蚀作用极大地限制了CdS光催化剂的放大应用.因此,人们采用众多改性策略以提高CdS光催化剂的可见光产氢活性,其中构建CdS纳米结构和负载助催化剂被认为是最有效的方式.构建CdS纳米结构既可以缩短载流子的迁移路径,也可以减少CdS晶体中的缺陷.很多不同纳米结构的CdS光催化剂已经被开发,例如纳米线、纳米颗粒和纳米棒等.因为制备过程极为复杂繁琐,所以CdS纳米片的研究鲜见报道.本文采用乙酸鎘和硫脲为原材料,通过简单的溶剂热法合成了CdS纳米片.在CdS的各类助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来众多非贵金属助催化剂(例如MoS_2,WS2,NiS,NiO和WC等)得到了广泛关注.由于非贵金属助催化剂存在弱电导率和低功函数等问题,影响了对光生电子的收集和利用.纳米碳材料具有极高的电导率、强可见光吸收、有效的载流子分离和较多的反应位点等优点,因此组合纳米碳材料和非贵金属助催化剂被认为是一种有效的解决方案.本文首次采用炭黑和NiS_2作为双助催化剂改性CdS纳米片,通过简单的溶剂热/沉淀两步法成功合成了廉价高效的CdS/CB/NiS_2三元光催化体系.光催化产氢性能测试表明,CdS-0.5%CB-1%NiS_2展现出最高的光催化效率(166.7μmol h~(-1)),分别是CdS NSs和CdS-1.0%NiS_2的5.16和1.87倍.X射线衍射、高分辨电子显微镜和X射线光电子能谱结果证实了CdS催化剂的片状结构,且炭黑和NiS_2成功负载在CdS纳米片表面.紫外-可见漫反射结果表明,随着炭黑和NiS_2的负载,复合催化剂的吸收边缘产生明显的红移,且对可见光的吸收增强.荧光光谱、阻抗和瞬态光电流曲线测试结果证明,炭黑和NiS_2的加入可以有效地促进光生电子/空穴对分离.极化曲线结果表明,加入炭黑和NiS_2可以降低CdS的产氢过电势,因此加速表面产氢动力学.总之,炭黑和NiS_2之间显著的协同效应极大地提高了可见光吸收,促进光生电子/空穴对分离,加速表面产氢动力学,最终得到了三元光催化体系极高的光催化产氢活性.  相似文献   

19.
C-N共掺杂纳米TiO2的制备及其光催化制氢活性   总被引:3,自引:0,他引:3  
采用TiCN粉末在空气气氛中不同温度下焙烧制得C-N共掺杂的纳米TiO2光催化剂. 利用X射线衍射(XRD)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)以及X射线光电子能谱(XPS)等手段对其进行了表征. XRD和XPS结果表明, TiCN中的C和N元素可以被O取代得到C-N共掺杂的TiO2. DRS结果表明, 所制得的C-N共掺杂的TiO2在可见光区域比P25表现出更强的光吸收性能. 以Na2S-Na2SO3体系为牺牲剂, 分别考察了不同温度下焙烧得到的C-N共掺杂的TiO2光催化分解水产氢的活性. 结果表明, 550 ℃焙烧得到的C-N共掺杂的TiO2在紫外光照射下具有最高的光解水产氢活性,产氢速率为41.1 μmol·h-1, 大于P25的光解水产氢活性(26.2 μmol·h-1). 在紫外-可见光照射下, 光解水产氢速率仅为0.2 μmol·h-1, 这可能是由于C-N掺杂引起的可见光范围的吸收对光催化分解水产氢活性的贡献较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号