首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The apparent molar volume of paracetamol (4-acetamidophenol) in water, 0.1 M HCl and 0.154 M NaCl as solvents at (298.15, 303.15, 308.15 and 310.65) K temperatures and at a pressure of 101.325 kPa were determined from the density data obtained with the help of a vibrating-tube Anton Paar DMA-48 densimeter. The partial molar volume, Vm, of paracetamol in these solvents at different temperatures was evaluated by extrapolating the apparent molar volume versus molality plots to m = 0. In addition, the partial molar expansivity, E°, the isobaric coefficient of thermal expansion, αp, and the interaction coefficient, Sv, have also been computed. The expansivity data show dependence of E° values on the structure of the solute molecules.  相似文献   

2.
Experimental density and the refractive index of the ternary mixture acetone + n-hexane + water, and their binary systems were experimentally measured and correlated at 298.15 K and atmospheric pressure. A maximum in refractive indices has been observed for the acetone + water system while the excess molar volume and the molar refraction change are all negative. For the mixture acetone + n-hexane, the excess molar volume is always positive and the molar refraction change of mixing showed a S-shaped dependence on acetone composition. The excess molar volumes and molar refraction changes of mixing were correlated using the Redlich-Kister expression and Cibulka equation. The coefficients and standard deviation between the experimental and fitted values were estimated. Good agreement between both results was obtained.  相似文献   

3.
Isothermal molar volume data of (acetonitrile + water) mixtures, between T = 273.15 K and T = 318.15 K, extracted from different sources are combined and treated as a single set to even out minor differences between sources and to increase the number of data points for each temperature. Tikhonov regularization is applied to compute the isothermal first and second derivatives of these data with respect to molar composition. For the reference temperature of 298.15 K, this computation is extended to the third derivative. Generalized Cross Validation is used to guide the selection of the regularization parameter that keeps noise amplification under control. The resulting first derivatives are used to construct the partial molar volume curves which are then checked against published results. Properties of the partial molar volumes are analysed by examining their derivatives. Finally the general shape of the second derivative curve of molar volume is explained qualitatively in terms of tripartite segmentation of the molar composition interval but quantitative comparisons are required to confirm this explanation.  相似文献   

4.
Densities of the water + 3-(dimethylamino) propylamine (DMAPA) binary system were measured at atmospheric pressure over the whole range of compositions at temperatures from 283.15 to 353.15 K using Anton Paar digital vibrating glass tube densimeter. The density of this system has been found an increasing function of water composition and a decreasing function of temperature. Excess molar volumes have been correlated using Redlich-Kister equations. Sets of parameters have been determined from experimental data to obtain correlations in the measurement range uncertainty. Partial molar volumes on the whole concentration range have been determined using Redlich-Kister parameters.  相似文献   

5.
Vapour–liquid equilibria and densities for the ternary system chloroform + tetrahydrofuran + cyclohexane and for the binary mixtures containing chloroform have been determined at 298.15 K. Vapour–liquid equilibrium data have been collected by head-space gas-chromatographic analysis of the vapour phase directly withdrawn from an equilibration apparatus. Density measurements have been carried out by means of a vibrating tube densimeter. Molar excess Gibbs energies GE and volumes VE, as well as activity coefficients and apparent molar volumes of the components, have been obtained from the measured quantities and discussed. The binary chloroform + tetrahydrofuran displays negative deviations from ideality, while chloroform + cyclohexane positive deviations, for both volume and Gibbs energy. The GE's and VE's for the ternary system are positive in the region rich in cyclohexane while negative in the region rich in chloroform + tetrahydrofuran. This indicates that hydrogen bonding between chloroform and tetrahydrofuran molecules produces negative values of GE and VE and strongly influences the behaviour of the ternary system.  相似文献   

6.
A high pressure flow-mixing isothermal calorimeter is used to determine the excess molar enthalpies of methylformate + (1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-pentanol) at T = 298.15 K and p = (5.0, 10.0) MPa, and methylformate + 1-propanol at T = 333.15 K and p = 10.0 MPa. The Redlich-Kister equation is fit to the experimental results.  相似文献   

7.
We determined apparent molar volumes V? from densities measured with a vibrating-tube densimeter at 278.15 ? (T/K) ? 368.15 and apparent molar heat capacities Cp,? with a twin fixed-cell, differential, temperature-scanning calorimeter at 278.15 ? (T/K) ? 363.15 for aqueous solutions of N-acetyl-d-glucosamine at m from (0.01 to 1.0) mol · kg−1 and at p = 0.35 MPa. We also determined V? at 278.15 ? (T/K) ? 368.15 and Cp,? at 278.15 ? (T/K) ? 393.15 for aqueous solutions of N-methylacetamide at m from (0.015 to 1.0) mol · kg−1 and at p = 0.35 MPa. Empirical functions of m and T for each compound were fitted to our results, which are then compared to those for N,N-dimethylacetamide. Estimated values of ΔrVm(mT) and ΔrCp,m(mT) for formation of aqueous N-acetyl-d-glucosamine from aqueous d-glucose and aqueous acetamide are calculated and discussed.  相似文献   

8.
Excess molar enthalpies and heat capacities of dimethyl sulfoxide + 1,4-dioxane, dimethyl sulfoxide + 1,3-dioxolane, dimethyl sulfoxide + tetrahydropyran, dimethyl sulfoxide + tetrahydrofuran, dimethyl sulfoxide + 1,2-dimethoxyethane, and dimethyl sulfoxide + 1,2-diethoxyethane have been measured at 308.15 K and at atmospheric pressure using an LKB micro-calorimeter and a Perkin-Elmer differential scanning calorimeter. Heat capacities of pure components were determined in the range (293.15 < T/K < 423.15). The results of excess molar enthalpies were fitted to the Redlich-Kister polynomial equation to derive the adjustable parameters and standard deviations, and were used to study the nature of the molecular interactions in the mixtures. Results of excess molar enthalpy were interpreted by an extended modified cell model.  相似文献   

9.
Isothermal vapor–liquid equilibrium data determined by the static method at 303.15 K are reported for the binary systems propyl vinyl ether + 1-propanol, 1-propanol + 2,2,4-trimethylpentane and propyl vinyl ether + 2,2,4-trimethylpentane and also for the ternary system propyl vinyl ether + 1-propanol + 2,2,4-trimethyl-pentane. Additionally, new excess volume data are reported for the same systems at 298.15 K. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different GE models and excess molar volume data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively.  相似文献   

10.
The partial molar volumes, , and partial molar heat capacities, , at infinite dilution have been determined for the compounds N-acetylasparaginamide, N-acetylglutaminamide, N-acetyltyrosinamide, and N-acetyllysinamide monohydrochloride in aqueous solution at T = (288.15, 298.15, 313.15, and 328.15) K. These results, along with the literature data for the compound N-acetylglycinamide, have been used to calculate the amino acid side-chain contributions to the thermodynamic properties. These side-chain contributions are compared with those obtained using small peptides as side-chain model compounds.  相似文献   

11.
We have measured the densities at temperatures T = (278.15 to 363.15) K and heat capacities at T = (278.15 to 393.15) K of aqueous solutions of 18-crown-6 and of (18-crown-6 + KCl) at molalities m = (0.02 to 0.3) mol · kg−1 and at the pressure 0.35 MPa. We have calculated apparent molar volumes V? and apparent molar heat capacities Cp,? for 18-crown-6(aq), and we have applied Young’s Rule and have accounted for chemical speciation and relaxation effects to resolve V? and Cp,? for the (18-crown-6: K+,Cl)(aq) complex in the mixture. We have also calculated estimates of the change in volume ΔrVm, the change in heat capacity ΔrCp,m, the change in enthalpy ΔrHm, and the equilibrium quotient log Q for formation of the complex at T = (278.15 to 393.15) K and m = (0 to 0.3) mol · kg−1.  相似文献   

12.
Densities ρ of the ternary system (ethanol + chloroform + benzene) and binaries (ethanol + chloroform) and (chloroform + benzene), have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15) K and pressure 101.33 kPa with an Anton Paar DMA 5000 digital vibrating tube densimeter. Excess molar volumes VE were calculated from these densities data and fitted by the polynomial Redlich–Kister (for binary data) and Nagata and Tamura (for ternary data) equations. Radojkovi? et al. equation was used for the prediction of the VE of ternary data. The obtained results have been explained in terms of different effects between molecules of present species, taking into consideration influence of temperature on them.  相似文献   

13.
A commercial flow-mixing isothermal calorimeter was tested by measuring heat of mixing curves for exothermic, endothermic, S-shaped and double minimum molar excess enthalpy mixtures at high pressure. The results show this calorimeter is able to produce good quality data. Molar excess enthalpies for ethyl acetate mixed with a series of simple alkanols were measured at T = 298.15 K and p = 10 MPa.  相似文献   

14.
Experimental data on density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K, while speed of sound values at T = 298.15 K are presented for the binary mixtures of (methylcyclohexane + benzene), methylbenzene (toluene), 1,4-dimethylbenzene (p-xylene), 1,3,5-trimethylbenzene (mesitylene), and methoxybenzene (anisole). From these data of density, viscosity, and refractive index, the excess molar volume, the deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. The computed values have been fitted to Redlich-Kister polynomial equation to derive the coefficients and estimate the standard errors. Variations in the calculated excess quantities for these mixtures have been studied in terms of molecular interactions between the component liquids and the effects of methyl and methoxy group substitution on benzene ring.  相似文献   

15.
Accurate excess molar volumes (VE), at ambient pressure and 303.15 K, have been determined in the ternary liquid mixtures of N,N-dimethylformamide (DMF) + 2-pentanone (PE) + 1-alkan-1-ols (C3-C6) and in the binary mixtures of PE + alkan-1-ols (C3-C6) as a function of composition. The alkanols include 1-propanol, 1-butanol, 1-pentanol and 1-hexanol. The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties. Excess molar volumes increase in magnitude with increase in chain length of alcohol. Valuable information on the behavior and governing factors of the liquid structure of the strongly associated solvents studied were inferred from the parameters deduced. The VE results were correlated and fitted by the Redlich-Kister equation for binary mixtures and by the Cibulka equation for ternary mixtures, as a function of mole fraction. Several predictive empirical relations were applied to predict the excess volumes of ternary mixtures from the binary mixing data. An analysis of the data indicates a good agreement between experimental results and predicted values in all ternary systems. A discussion is presented and deviations are interpreted in terms of size, shape, the position of ketone group, the chain length of alkanol and hydrogen bond effects in the liquid mixtures studied to explain chemical and thermophysical behavior.  相似文献   

16.
17.
The (p, ρ, T) properties of pure methanol, the (p, ρ, T) properties and apparent molar volumes V? of ZnBr2 in methanol at T = (298.15 to 398.15) K and pressures up to p = 40 MPa are reported, and apparent molar volumes have been evaluated. The experimental (p, ρ, T, m) values were described by an equation of state. For the solutions the experiments were carried out at molalities m = (0.05772, 0.37852, 0.71585 and 1.95061) mol · kg−1 of zinc bromide.  相似文献   

18.
Densities of boldine + alcohol binary mixtures were measured over the whole accessible range of boldine compositions at temperatures from 283.15 to 333.15 K using an Anton-Paar digital vibrating glass tube densimeter. The binary systems studied include, as a solvent, seven normal alcohols from n-C1 to n-C6, n-C8, and isopropanol. The density of these systems has been found an increasing function of the boldine composition. A new methodology based on density data of solutions of solid solutes with normal alcohols is described in order to determine solid molar volume of pure solutes. This methodology was validated with pure solid naphthalene molar volumes data at 298.15 K, with an average uncertainty of 6%.  相似文献   

19.
Densities ρ and viscosities η of two hydroxamic acids, N-phenyl-2-chlorobenzo- and N-o-tolyl-4-chlorobenzo-, have been determined as a function of their concentration in aqueous acetone solution at temperatures 303.15 and 313.15 K. Apparent molar volumes, standard-state partial molar volumes and relative viscosities have been calculated. The viscosity data have been analyzed using Jones-Dole equation. The activation thermodynamic parameters of viscous flow have been evaluated using Feakins equation. These were obtained to throw light on the mechanism of viscous flow. Thermodynamic interactions in solutions have been studied in terms of a number of excess functions calculated from the experimental data. The effect of hydroxamic acid concentration and temperature on these parameters has been discussed. The results were interpreted in the light of solute-solvent interactions in aquo-organic media.  相似文献   

20.
Isothermal vapor-liquid equilibrium data at 333.15 K are reported for the ternary systems {di-methyl carbonate (DMC) + ethanol + benzene} and {DMC + ethanol + toluene} as determined with headspace gas chromatography. The experimental ternary vapor-liquid equilibrium (VLE) data were correlated with different activity coefficient models. The excess volume (VE) and deviations in molar refractivity (ΔR) data are reported for the binary systems {DMC + benzene} and {DMC + toluene} and also for the ternary systems {DMC + ethanol + benzene} and {DMC + ethanol + toluene} at 298.15 K. These VE and ΔR data were correlated with the Redlich-Kister equation for binary systems and the Cibulka equation for ternary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号