首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of formation and dissociation of [V(H2O)5NCS]2+ have been studied, as a function of excess metal-ion concentration, temperature, and pressure, by the stopped-flow technique. The thermodynamic stability of the complex was also determined spectrophotometrically. The kinetic and equilibrium data were submitted to a combined analysis. The rate constants and activation parameters for the formation (f) and dissociation (r) of the complex are: k/M ?1 · S?1 = 126.4, k/s?1 = 0.82; ΔH /kJ · mol?1 = 49.1, ΔH/kJ · mol?1 = 60.6; ΔS/ J·K?1·mol?1= ?39.8, ΔSJ·K?1·mol?1 = ?43.4; ΔV/cm3·mol?1 = ?9.4, and ΔV/cm3 · mol?1 =?17.9. The equilibrium constant for the formation of the monoisothiocynato complex is K298/M ?1 = 152.9, and the enthalpy and entropy of reaction are ΔH0/kJ · mol?1 = ? 11.4 and ΔS0/J. K?1mol?1 = +3.6. The reaction volume is ΔV0/cm3· mol?1 = +8.5. The activation parameters for the complex-formation step are similar to those for the water exchange on [V(H2O)6]3+ obtained previously by NMR techniques. The activation volumes for the two processes are consistent with an associative interchange, Ia, mechanism.  相似文献   

2.
The transverse relaxation rate of H2O in Al(H2O) has been measured as a function of temperature (255 to 417 K) and pressure (up to 220 MPa) using the 17O-NMR line-broadening technique, in the presence of Mn(II) as a relaxation agent. At high temperatures the relaxation rate is governed by chemical exchange with bulk H2O, whereas at low temperatures quadrupolar relaxation is prevailing. Low-temperature fast-injection 17O-NMR was used to extend the accessible kinetic domain. The samples studied contained Al3+ (0.5 m), Mn2+ (0.2–0.5 m), H + (0.2–3.1 m) and 17O-enriched (20–40%) H2O. Non-coordinating perchlorate was used as counter ion. The following H2O exchange parameters were obtained: k = (1.29 ± 0.04) s−1, ΔH* = (84.7 ± 0.3) kJ mol−1, ΔS* = +(41.6 ± 0.9) J K −1 mol−1, and ΔV = +(5.7 ± 0.2) cm3 mol−1, indicating a dissociative interchange, Id, mechanism. These results of H2O exchange on Al(H2O) are discussed together with the available complex-formation rate data and permit also the assignment of Id mechanisms to these latter reactions.  相似文献   

3.
The stabilities of the Mn2+-, Co2+-, Ni2+-, Cu2+- and Zn2+-complexes with 2-(carboxymethyl)glutaric acid ( 2 ) and cis,cis-1,3,5-cyclohexanetricarboxylic acid ( 3 ) were measured potentiometrically at 25° and I = 0.5 (KNO3). Beside the complexes ML? protonated species MLH and MLH are also formed. Their stability constants are given in Table 1. A comparison between the stabilities of 2 or 3 and those of acetate, as a model for a monocarboxylate, or succinate and glutarate, as examples for dicarboxylates, indicates that in all species only one carboxylate is strongly bound whereas the second and third ones are probably not. The observation that Δlog K1 = log K ? log K as well as Δlog K2 = log K ? log K are practically constants with values of 0.34 ± 0.05 and 0.49 ± 0.07, respectively, for both ligands and the five metal ions studied is also in line with the proposed monodentate structures of the complexes ML?, MLH and MLH.  相似文献   

4.
Cyclohexane and piperidine ring reversal in 1-(3-pentyloxyphenylcarbamoyloxy)-2-dialkylaminocyclohexanes was investigated by 13C NMR. An unusually low conformational energy ΔG = 0.59 kJ mol?1 and activation parameters ΔG218 = 43.8 ± 0.4 kJ mol?1, ΔH = 48.9 ± 2.5 kJ mol?1 and ΔS = 23 ± 9 J mol?1 K?1 were found for the diequatorial to diaxial transition of the cyclohexane ring in the trans-pyrrolidinyl derivative. In the trans-piperidinyl derivative, ΔG222 = 44.7 ± 0.5 KJ mol?1, ΔH = 55.7 ± 6.3 kJ mol?1 and ΔS = 51 ± 21 J mol?1 K?1 was found for the piperidine ring reversal from the non-equivalence of the α-carbons.  相似文献   

5.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

6.
The ligands (L) bis (2-pyridyl) methane (BPM) and 6-methyl-bis (2-pyridyl)methane (MBPM) form the three complexes CuL2+, CuL, and Cu2L2H with Cu2+. Stability constants are log K1 = 6.23 ± 0.06, log K2 = 4.83 ± 0.01, and log K (Cu2L2H + 2H2+ ? 2 CuL2+) = ?10.99 ± 0.03 for BPM and 4.56 ± 0.02, 2.64 ± 0.02, and ?11.17 ± 0.03 for MBPM, respectively. In the presence of catalytic amounts of Cu2+, the ligands are oxygenated to the corresponding ketones at room temperature and neutral pH. With BPM and 2,4,6-trimethylpyridine (TMP) as the substrate and the buffer base, respectively, the kinetics of the oxygenation can be described by the rate law with k1 = (5.9 ± 0.2) · 10?13 mol l?1 s?1, k2 = (4.0 ± 0.6) · 10?4 mol?1 ls?1, k3 = (1.1 ± 0.1) · 10?12 mol l?1 s?1, and k4 = (9 ± 2) · 10?14 mol l?1 s?1.  相似文献   

7.
The oxidation of Na4Fe(CN)6 complex by S2O anion was found to follow an outer‐sphere electron transfer mechanism. We firstly carried out the reaction at pH=1. The specific rate constants of the reaction, kox, are (8.1±0.07)×10?2 and (4.3±0.1)×10?2 mol?1·L·s?1 at μ=1.0 mol·L?1 NaClO4, T=298 K for pH=1 (0.1 mol·L?1 HCl04) and 8, respectively. The activation parameters, obtained by measuring the rate constants of oxidation 283–303 K, were ΔH=(69.0±5.6) kJ·mol?1, ΔS=(?0.34±0.041)×102 J·mol?1·K?1 at pH=l and ΔH=(41.3±5.5) kJ·mol?1, ΔS=(?1.27±0.33)×102 J·mol?1·K?1 at pH=8, respectively. The cyclic voltammetry of Fe(CN) shows that the oxidation is a one‐electron reversible redox process with E1/2 values of 0.55 and 0.46 V vs. normal hydrogen electrode at μ=1.0 mol·L?1 LiClO4, for pH=1 and pH=8 (Tris). respectively. The kinetic results were discussed on the basis of Marcus theory.  相似文献   

8.
The crystal structures of Mn5O8 and Cd2Mn3O8 are determined from single crystal and high resolution X-ray powder data. Both structures have very similar monoclinic unit cells, space group CC2/m, and are isotypic: Hence, the true formula of Mn5O8 is MnMnO8. The crystal structure consists of pseudohexagonal MnIV sheets (bc) with similar oxygen sheets on either side, giving a distorted octahedral coordination to the MnIV. As every fourth MnIV is missing in these “main layers”, their composition becomes Mn3O8, and chains of coordination octahedra linked by common edges become distinct. Above and below the empty MnIV sites are either MnII or CdII completing the composition MnMnO8 or Cd2Mn3O8 respectively. Examples of similar “double layer” structures are given.  相似文献   

9.
The water exchange of [V(H2O)6]Cl2 in aqueous solution has been studied as a function of temperature and pressure (up to 250 MPa), by measuring the 17O-FT-NMR. line-widths of the free water resonance at 8.13 MHz. The kinetic parameters obtained are K = 87±4 s?1, ΔH* = +61.8 ± 0.7 kJ mo1?1 and ΔS* = ?0.4±1.9 J mol?1 K?1. A pressure-independent volume of activation ΔV* = ?4.1±0.1 cm3 mol?1 is obtained, suggesting an associative interchange (Ia) mechanism for this early divalent metal ion.  相似文献   

10.
(?)-β-Caryophyllene (1) adopts three conformations in solution: αα(48%), βα(28%), and ββ(24%). The conformations were identified by an analysis of the 13C- and 1H-NMR spectra at ?87.2 and ?153.8° in connection with APT, HETCOR, and COSY spectra, and subsequent NOESY experiments. The activation parameters of the conversion αα → βα were determined from a bandshape analysis of exchange-broadened 13C-NMR spectra of 8-[methylene-13C]- 1 to give ΔH = 5.9 ± 0.3 kcal/mol, ΔS? = ?8.1 ± 1.8 cal/mol. · K. and ΔG = ?8.3 ± 0.8 kcal/mol. The observed population ratio of the different conformers is best described by MM3.  相似文献   

11.
In aqueous acetonitrile (AN), Cu (I) forms the complexes Cu(AN)L+ and CuL with a series of substituted imidazoles (L). Stability constants logK of Cu(AN)+ + L ? Cu(AN)L+ and logβ2 were near 5 and 12, resp., log units for all ligands. The rate of autoxidation is described by ?d[O2]/dt=[CuL]2[O2](ka/(1+kb[CuL]) + (kc[L]+kd)/([CuL] + ke[Cu])), implying competition between one- or two-electron reduction of O2. The value of kc decreases from 5500M ?2S ?1 for unsubstituted imidazole to about 40M ?2S ?1 for 2-methylimidazole or 1,2-dimethyl-imidazole and essentially zero for the corresponding 2-ethyl-derivatives. On the other hand, ka and kb are much less influenced by the nature of the ligands, all values being near 5 · 104M ?2S ?1 and 103M ?1, respectively, for the complexes with the last four bases. Thus rather subtle sterical changes may strongly influence the relative importance of different pathways in the reduction of dioxygen by cuprous complexes.  相似文献   

12.
The kinetics of the bromate ion-iodide ion-L-ascorbic acid clock reaction was investigated as a function of temperature and pressure using stopped-flow techniques. Kinetic results were obtained for the uncatalyzed as well as for the Mo(VI) and V(V) catalyzed reactions. While molybdenum catalyzes the BrO-I? reaction, vanadium catalyzes the direct oxidation of ascorbic acid by bromate ion. The corresponding rate laws and kinetic parameters are as follows. Uncatalyzed reaction: r2 = k2[BrO] [I?][H+]2, k2 = 38.6 ± 2.0 dm9 mol?3 s?1, ΔH? = 41.3 ± 4.2 kJmol?1, ΔS? = ?75.9 ± 11.4 Jmol?1 K?1, ΔV? = ?14.2 ± 2.9 cm3 mol?1. Molybdenum-catalyzed reaction: r2 = k2[BrO] [I?] [H+]2 + kMo[BrO] [I?] [ H+]2[M0(VI)], kMo = (2.9 ± 0.3)106 dm12 mol?4 s?1, ΔH? = 27.2 ± 2.5 kJmol?1, ΔS? = ?30.1 ± 4.5 Jmol?1K?1, ΔV? = 14.2 ± 2.1 cm3 mol?1. Vanadium-catalyzed reaction: r1 = kV[BrO] [V(V)], kV = 9.1 ± 0.6 dm3 mol?1 s?1, ΔH? = 61.4 ± 5.4 kJmol?1, ΔS? = ?20.7 ± 3.1 Jmol?1K?1, ΔV? = 5.2 ± 1.5 cm3 mol?1. On the basis of the results, mechanistic details of the BrO-I? reaction and the catalytic oxidation of ascorbic acid by BrO are elaborated. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Synthesis, redox, photophysical, and photochemical properties of Ru(NN) complexes NN = 2-((2′-pyridyl)thiazole (pyth), 2-(2′-pyrazyl)thiazole (pzth), 2,2′-bithiazole (bth), 5-(2′-pyridyl)-1,2,4-thiadiazole (pytda), 2-(2′-pyridyl)imidazole (pyim), 1-methyl-2-(2′-pyridyl)imidazole (Mepyim), and 2-(2′-pyridyl)oxazole (pyox)) are described. Oxidation potentials for the Ru3+/2+ couples in MeCN varied from about 0.80 V to 1.60 V vs. NHE. Three reduction waves were observed in all the cases except for Ru(pyim) and Ru(Mepyim) complexes and asigned to the one-electron reduction of each bidentate ligand. Absorption spectra contained bands in the UV (280–325 nm) and VIS (437–481 nm) regions which have been assigned to ligand-centered π-π* and metal-to-ligand charge-transfer dπ-π* transitions, respectively. Emission spectra at 77 K were determined for all the complexes presenting maxima in the 580–650-nm region, with vibrational progression in some of them. Only pyth, pzth, bth, and pytda tris-chelates showed luminescence at room temperature in aqueous solution, with quantum yields ranging from 0.0013 to 0.0095 and excited-state lifetimes from 55 to 390 ns, as determined from pulsed laser techniques. Their E0–0 spetroscopic energies have been estimated from emission wavelength maxima at 77 K which, in turn, have allowed calculation of excited-state redox potentials. A plot of E0–0 vs. ΔE1/2, where ΔE1/2 = E1/2(3+/2+) ? E1/2(2+/+), was linear with a slope of ca. 1.1 and a correlation coefficient of 0.999, demonstrating an identical nature of the orbital involved in spectroscopic and electrochemical processes. Photochemical properties of Ru(NN) complexes have been tested using methyl viologen (MV2+) in Ar-purged aqueous solution at pH 5. Stern-Volmer treatment has led to the determination of bimolecular quenching constants (0.5 to 2 × 109m?1·s?1) which parallel electron-transfer free-energy changes. Homogeneous back-reaction of primarily produced MV and Ru(NN) has been measured resulting to be slightly higher than diffusion control and independent of ligand nature. Rate constants for the scavenging of Ru(NN) by added edta have been also determined (1.7 to 8.2 × 108M?1 · S?1). Under such conditions, net production of MV is attained with quantum yields varying from 0.003 to 0.038 (single-shot laser results).  相似文献   

14.
2,3-Dimethylidenebicyclo [2.1.1]hexane (4) was isolated from direct irradiation (253.7 nm) of 5,6-dimethylidene-2-norbornanone (3) . Quenching experiments at 253.7 nm, as well as direct and sensitized irradiations at >300 nm suggested that a high vibrationally excited S1- or a S2-state is required for the photodecarbonylation of 3 in contrast with other β, γ-unsaturated ketones for which α-cleavage occurs with lower excitation-energy. The new diene 4 reacted toward tetracyano-ethylene (k (1mol?1 s?1))=(3.1±0.34) · 10?3) in toluene and (6.2±0.11) · 10?3 in benzene only 60 times more slowly than 2,3-dimethylidenenorbornane (5) and ca. 850 times as fast as 2,3-dimethylidene-syn1,4,5,6-tetramethylbicyclo[2.1.1]-hexane (9) .  相似文献   

15.
Influence of Solvents, Viscosity, Acid, and Substituents on the Photoisomerization and the Relaxation of Symmetrical Triazacarbocyanine Dyes at 283 to 323 K Photobleaching and the reverse dark reaction of seven symmetrical triazacarbocyanine dyes with different heterocycles were studied dependent on solvent effects (protic and aprotic solvents), on effects of viscosity (glycerol/EtOH mixtures), and on effects of added acid. No effects of dissolved O2 or added I2 has been observed. Kinetic data (ΔH, ΔS, and ΔG) of the reverse reaction are given. The effect of the substituents has been studied on two series of substituted triazacarbocyanine dyes. The mechanism of the reverse reaction is discussed.  相似文献   

16.
The equilibrium constants of the reactions MBr2(s) + Al2Br6(sln) ? MAl2Br8(sln) M = Cr, Mn, Co, Ni, Zn, Cd have been measured at 298 K in toluene. Ni: 0.017 ± 0.0024, Co: 0.54 ± 0.07, Zn: 1.5 ± 0.2, Mn: 2.1 ± 0, 7, Cr: 2.2 ± 1, Cd: 7 ± 5. They are compared with literature values of the equilibrium constants of analogous reactions in the gas phase MX2(s) + Al2X6(g) ? MAl2X8(g), X = Cl, Br. For CoAl2Br8(sln) the temperature dependence of the equilibrium constant yielded ΔfH = ?9.4 ± 1 kJ mol?1 and ΔfS = ?39.5 ± 3 J mol?1 K?1 while literature values for CoAl2Br8(g) are ΔfH = 42.4 ± 2 kJ mol?1 and ΔfS = 42.9 ± 2 J mol?1 K?1. The solubility of Al2Br6 in toluene as well as its enthalpy of dissolution have been measured in order to evaluate ΔH° and ΔS° of the solvation of Al2Br6(g) and CoAl2Br8(g) in toluene by a thermodynamic cycle. Solvation of Al2Br6(g): ΔH = ?72.7 ± 1 kJ mol?1, ΔS = ?139.6 ± 4 J mol?1 K?1, solvation of CoAl2Br8(g): ΔH = ?124.5 ± 4kJ mol?1, ΔS = ?222 ± 9J mol?1 K?1. Thus, CoAl2Br8 interacts more strongly with the solvent toluene than Al2Br6 does.  相似文献   

17.
The stability constants of the Ni2+ and Co2+ complexes with 1,5-diazacyclooctane-N,N′-diacetic acid (H2DACODA) have been determined potentiometrically in 0.5M KNO3 at 25°. Only M(DACODA) and M(DACODA)OH? were observed. In addition the formation and dissociation kinetics of the pentacoordinate complexes M(DACODA) has been studied in aqueous solution using a stopped-flow technique. Formation follows the rate law vf = kf [M2+] [HDACODA?]/[H+], which can be interpreted as a bimolecular process either between M2+ and DACODA2? (k) or between MOH+ and HDACODA? (k). The second order rate constants k are much higher than those expected from water exchange and can only be explained by a strong internal conjugate base effect. In the limiting case, however, this is equivalent to the second possible explanation, which assumes MOH+ and HDACODA? as reactive species. The dissociation rate is given by vd = (kML + k [H+]) · [M(DACODA)].  相似文献   

18.
Oscillating Chemical Reactions. 11. Behaviour of the “induction period” in the BrO /Ce4+/Cyclohexanon and BrO /Ce4+/Cyclopentanon systems
  • (1) The addition of α-monobromoketone, one of the products of reaction of the BrO3?/Ce4+/Cyclohexanon (S1) and BrO3?/Ce4+/Cyclopentanon (S2) oscillating systems, decreases and even suppresses the induction period (τind.) in the case of S2. Such is not the case with S1: τind. increases and the oscillations can even be completely inhibited.
  • (2) The order of addition of the reagents and the time lapse (tadj.) preceding the addition of the last of them influences τind., particularly when the last reagent added is Ce4+.
  • (3) In our experimental conditions, the inhibition of the oscillatory phenomenon by Cl? ions is definite only for | Cl? | ≥ 5,0 · 10?2M (S1) and |Cl?| > 2,5 · 10?3M (S2); for lower concentrations τind. increases with | Cl?|.
  相似文献   

19.
The autoxidation of CuI in aqueous MeCN has been studied using a Clark oxygen electrode in the presence and absence of Cu11. The reaction is inhibited by Cu11 in the pH range of 0.5 to 5.0, reaching a lower limiting value at the highest concentrations. The reaction order changes from 1 to 2 with respect to CuI under the influence of Cu2+ ion. Detailed kinetics analysis of a total of 275 measurements has shown that an unstable primary adduct CuO+2 decomoses to give .O or HO, depnding on pH, and also reacts directly with a second Cu+ ion, avoiding one-electrton reduction of O2 by this path. Reaction of HO is faster with CuI than with Cu11 by a factor of 20, and single-electron transfer within CuO+2 to Cu2+ and .O predominates over reaction with a second copper ion for [CuItot] < 2. 10?3M in the absence of Cu2+. The most likely value for the reaction of .O with CuI is 5.3 · 108 M ?1S?1, but even this high rate constant is at the limit of significance. All secondary reactions followinfg the initial formation of CuO+2 are shown to be very fast, a fact that should be properly considered in the discussion of mechanisms of copper-catalyzed oxidations and oxygenations.  相似文献   

20.
Proton noise decoupled 13C NMR spectra of lithium 1,1,3,3-bis (2,2′-biphenylylene)propenide and lithium 1,1,3,3-tetraphenylpropenide have been studied, and complete assignments have been made based on several methods, e.g. 13C? 13C coupling constants of selectively labelled compounds and low-temperature splitting of temperature dependent signals. The barriers to rotation about the partial double bonds of the allyl group have been determined by 13C DNMR resulting in the thermodynamic parameters of activation ΔG = 57 kj mol?1, ΔH = 56.5 kj mol?1, ΔS = ?3J mol?1K?1 and ΔG = 55.5 kj mol?1, ΔH = 63 kj mol?1, ΔS = 26 kJ mol?1K?1, respectively. The results are discussed, including the hitherto known data about the topomerisation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号