首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this works, we have explored a new method for a green synthesis of poly(ethylglyoxylate) (PEtG). This method consists on using a montmorillonite clay called “Maghnite-H+” as an eco-catalyst to replace triethylamine which is toxic. Cationic polymerization experiments are performed in bulk conditions at three temperatures (?40°C, 25°C, 80°C) and in THF solutions at room temperature (25°C). At 25°C, an optimum ratio of 5 wt% of catalyst leads to molar masses up to 22000 g/mol in THF solutions. Polymerizations in bulk conditions lead to slightly lower masses than experiments conducted in THF solutions. However, bulk polymerization of ethyleglyoxylate remains a preferable method in order to avoid the use of a solvent and therefore to stay in the context of green chemistry. The structure of obtained polymers are characterized and confirmed by 1H and 13C NMR. Thermogravimetric Analysis (TGA) shows an enhanced thermal stability for end-capped PEtG compared to non-terminated PEtG. The best conversion rate (92%) is observed in bulk conditions at 25°C for a reaction time of 48h. An activation energy could be calculated from bulk experiments (Ea = 6.9 kJ/mol). An interesting advantage of Maghnite-H+ is an easy recoverage by a simple filtration from the polymer solution.  相似文献   

2.
2‐[(N‐Benzyl‐N‐methylamino)methyl]‐1,3‐butadiene (BMAMBD), the first asymmetric tertiary amino‐containing diene‐based monomer, was synthesized by sulfone chemistry and a nickel‐catalyzed Grignard coupling reaction in high purity and good yield. The bulk and solution free‐radical polymerizations of this monomer were studied. Traditional bulk free‐radical polymerization kinetics were observed, giving polymers with 〈Mn〉 values of 21 × 103 to 48 × 103 g/mol (where Mn is the number‐average molecular weight) and polydispersity indices near 1.5. In solution polymerization, polymers with higher molecular weights were obtained in cyclohexane than in tetrahydrofuran (THF) because of the higher chain transfer to the solvent. The chain‐transfer constants calculated for cyclohexane and THF were 1.97 × 10?3 and 5.77 × 10?3, respectively. To further tailor polymer properties, we also completed copolymerization studies with styrene. Kinetic studies showed that BMAMBD incorporated into the polymer chain at a faster rate than styrene. With the Mayo–Lewis equation, the monomer reactivity ratios of BMAMBD and styrene at 75 °C were determined to be 2.6 ± 0.3 and 0.28 ± 0.02, respectively. Altering the composition of BMAMBD in the copolymer from 17 to 93% caused the glass‐transition temperature of the resulting copolymer to decrease from 64 to ?7 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3227–3238, 2001  相似文献   

3.
A slow continuous addition of dichloromethana solutions of α-methylstyrene (α-MeSt) into a dichloromethane solution of 2,5-dichloro-2,5-dimethylhexane (DDH) with BCI3 (initiating system II) prepared in advance resulted, in the temperature range between ?20 and ?40°, in a quasilving polymerization of α-MeSt. At ?20°C and a 100% conversion a polymer with a very narrow molecular weight distribution is formed, M?w/M?n - 1.1. Quasiliving polymerization of α-MeSt has not been achieved with freshly prepared dischloromethane solutions of DDH with BC3 (initiating sytem I), or with solutions of BCI3 alone (initiating system III). Polarity of the polymerization medium affected molecular weight distribution (MWD) of the polymer, and the polydispersity index decreased with decreasing polarity. MWD of the polymer samples were studied by the GPC method, the structure of poly (α-methylstyrene) (Pα-MeSt) was investigated by the 1H-NMR analysis  相似文献   

4.
o-Methoxystyrene was polymerized with n-butyllithium (n-BuLi), Na naphthalene, and K dispersion as initiators in tetrahydrofuran (THF) and toluene. The stereoregularity of the polymer was investigated by means of the NMR spectroscopy. The methoxy resonance of the spectrum split into ten components due to the tactic pentads. It was found by x-ray examination that the polymer obtained by n-BuLi in toluene at ?45°C was crystalline and highly isotactic. In THF, the stereospecificity of the polymerization was independent of the initiator, and the isotacticity of the polymer increased with increasing reaction temperature. In toluene, the stereospecificity depended on the initiator; i.e., n-BuLi gave a polymer with higher isotacticity than that given by phenylsodium. The fraction of isotactic triad of the polymer obtained by n-BuLi in toluene at ?78°C was more than 90%, but 50% at 50°C. The presence of ca. 1% THF in toluene led to a steep decrease in the isotacticity even at ?78°C. The tacticity of the polymer given by Na naphthalene was not affected by the existence of NaB(C6H5)4 in THF. The polymerization in THF could be explained by Bovey's “single σ” process, while a penultimate effect was observed in the polymerization by n-BuLi in toluene.  相似文献   

5.
Phthalaldehyde was found to undergo cyclopolymerization with ease by several cationic catalysts and by γ-ray irradiation. The polymer was composed entirely of the dioxyphthalan unit, as confirmed by infrared spectroscopy and ready decomposition to monomer. The enhanced polymerizability of phthalaldehyde as compared with other aromatic aldehydes was explained in terms of the intermediate-type or, preferably, concerted propagation scheme. The conversion reached a saturation value of 87% in about 1 hr in methylene chloride at ?78°C, indicating an equilibrium polymerization. The ceiling temperature of the polymerization was ?43°C, as estimated from the relation between the saturation yield and polymerization temperature. The enthalpy and entropy of propagation were ?5.3 kcal/mole and ?23.0 eu, respectively. Since the molecular weight of the polymer was proportional to conversion, the propagating chain end was considered to be “living” in this system. The rate constant for propagation was calculated to be 0.18 1/mole-sec in methylene chloride at ?78°C with BF3OEt2 catalyst.  相似文献   

6.
<正> 脂肪族三烷氧基稀土化合物作为双烯烃定向聚合的主催化剂只有少数专利。最近,单成基等以Nd(OR)_(3-n)Cl_n-AlEt_3催化体系对双烯烃聚合进行了研究。三氯化钕醇合物与烷基铝组成的双烯烃聚合催化体系已有报导。本文着重研究一苯氧基二氯化钕四氢呋喃络合物和三氯化稀土酚合物与烷基铝组成的催化体系对丁二烯聚合的催化活性。  相似文献   

7.
ABSTRACT

Radiation induced solid-state polymerization of acetylenedicarboxylic acid was carried out at room temperature in open atmosphere and under vacuum conditions. The gray colored powder polymer obtained was insoluble in most common solvents but only partially soluble in DMSO and THF. The limiting conversion to polymer was about 5%. The polymer was characterized by IR, UV, DP-MS, DSC, TGA, and XRD. The mechanism of polymerization was elucidated from the available data. Polymerization followed a free radical mechanism. However, before the addition of monomer molecules to the growing chain, at least one of the carboxylic groups of the monomer breaks away as CO or CO2. The formation of side group cyclization takes place. At least one of the bonds in the side cyclic group is an etheric bond. The DSC, TGA, and XRD results showed that the polymer was partially crystalline and showed no melting up to 1200°C. The mechanism of polymerization and assigned chain structure was studied by the direct pyrolysis mass spectrometric method.

The crystal structure of monomer and polymer was investigated by the XRD method. Both monomer and crystalline polymer were monoclinic with similar cell parameters. Thus, the polymerization follows a topotactic mechanism. The unpolymerized monomer retains its crystal structure and, therefore, CO or CO2 in the monomer molecule has to be eliminated before polymerization could take place.  相似文献   

8.
Anionic polymerization of β-methoxypropionaldehyde (MPA) was carried out in tetrahydrofuran (THF) by using benzophenone–monolithium complex as an initiator. An equilibrium between polymerization and depolymerization was observed at a temperature range of ?90 to ?70°C. From the temperature dependence of the equilibrium monomer concentration, thermodynamic parameters for the polymerization of MPA in THF were evaluated as follows: ΔHss = ?4.8 ± 0.2 kcal/mole, ΔHSS = ?22.4 ± 1.3 cal/mole-deg, and (Tc)ss = ?59°C. The thermodynamic change upon the conversion of liquid monomer to condensed polymer was computed from both the partial mixing energy of MPA with THF and the linear relationship between the equilibrium volume fraction of MPA monomer and that of the resulting polymer: ΔH1c = ?4.7 ± 0.2 kcal/mole, ΔS1c = ?19.5 ± 1.3 cal/mole-deg, and (Tc)1c = ?35°C.  相似文献   

9.
The free‐radical polymerization of methyl acrylate (MA) has been studied in the presence of a novel cyclic dixanthate under γ‐ray irradiation (80 Gy min?1) at room temperature (~28 °C), ?30 °C, and ?76 °C respectively. The resultant polymers have controlled molecular weights and relatively narrow molecular weight distributions, especially at low temperatures (i.e., ?30 and ?76 °C). The polymerization control may be associated with the temperature: the lower the temperature is, the more control there is. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of poly(methyl acrylate) (PMA) samples shows that there are at least three distributions: [3‐(MA)n‐H]+ cyclic polymers, [3‐(MA)n‐THF‐H]+, and [3‐(MA)n‐(THF)2‐H]+ linear PMAs. The relative content of the cyclic polymers markedly increases at a lower temperature, and this may be related to the reduced diffusion rate and the suppressed chain‐transfer reaction at the low temperature. It is evidenced that the good control of the polymerization at the low temperature may be associated with the suppressed chain‐transfer reaction, unlike reversible addition–fragmentation chain transfer polymerization. In addition, styrene bulk polymerizations have been performed, and gel permeation chromatography traces show that there is only one cyclic dixanthate moiety in the polymer chain. This article is the first to report the influence of a low temperature on controlled free‐radical polymerizations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2847–2854, 2007  相似文献   

10.
In the polymerization of α-methylstyrene (α-MeSt) in dichloromethane in the temperature interval between ?60 and ?20°C the polymer yield decreased with increasing temperature depending on the initiating system used (I-IV) in the series II > I > IV > III, where I was a freshly prepared solution of 2,5-dichloro-2,5-dimethylhexane (DDH) with BCl3 in dichloromethane, was the same solution as in the preceding case, but stored at room temperature one month and then used, III was a freshly prepared BCl3 solution in dichloromethane, and IV was the initiation system “H2O”/BCl3. The polymer samples synthesized at ≤ ?30°C had a bimodal molecular weight distribution (MWD), which was attributed to the different participation of ionic pairs and free ions in the propagation reaction. The stereoregularity of the polymer observed (ca. 85% syndiotactic and ca. 15% heterotactic triads) determined from the 1H-NMR spectra was not affected by the difference in the initiation system. MWD of the polymer samples was investigated by the GPC method  相似文献   

11.
The living cationic polymerization of isobutyl vinyl ether (IBVE) was investigated in the presence of various cyclic and acyclic ethers with 1-(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3, 1 ]/EtAlCl2 initiating system in hexane at 0°C. In particular, the effect of the basicity and steric hindrance of the ethers on the living nature and the polymerization rate was studied. The polymerization in the presence of a wide variety of cyclic ethers [tetrahydrofuran (THF), tetrahydropyran (THP), oxepane, 1,4-dioxane] and cyclic formals (1,3-dioxolane, 1,3-dioxane) gave living polymers with a very narrow molecular weight distribution (MWD) (M?ω/M?n ≤ 1.1). On the other hand, propylene oxide and oxetane additives resulted in no polymerization, whereas 1,3,5-trioxane gave the nonliving polymer with a broader MWD. The polymerization rates were dependent on the number of oxygen and ring sizes, which were related to the basicity and the steric hindrance. The order of the apparent polymerization rates in the presence of cyclic ether and formal additives was as follows: nonadditive ~ 1,3,5-trioxane ? 1,3-dioxane > 1,3-dioxolane ? 1,4-dioxane ? THP > oxepane ? THF ? oxetane, propylene oxide ? 0. The polymerization in the presence of the cyclic formals was much faster than that of the cyclic ethers: for example, the apparent propagation rate constant k in the presence of 1,3-dioxolane was 103 times larger than that in the presence of THF. Another series of experiments showed that acyclic ethers with oxyethylene units were effective as additives for the living polymerization with 1 /EtAlCl2 initiating system in hexane at 0°C. The polymers obtained in the presence of ethylene glycol diethyl ether and diethylene glycol diethyle ether had very narrow molecular weight distribution (M?ω/M?n ≤ 1.1), and the M?n was directly proportional to the monomer conversion. The polymerization behavior was quite different in the polymerization rates and the MWD of the obtained polymers from that in the presence of diethyl ether. These results suggested the polydentate-type interaction or the alternate interaction of two or three ether oxygens in oxyethylene units with the propagating carbocation, to permit the living polymerization of IBVE. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Abstract

1,5-Dioxepane-2-one (DXO) was coordinatively ring-opening polymerized with different Lewis acids in bulk and solution. The reactivities of a series of initiators (SnCl4, FeCl3, AlCl3, BCl3, and BF3OEt2) at different temperatures and reaction times were analyzed. Polymerization of DXO in bulk with SnCl4, FeCl3, AlCl3, and BCl3 gave only oligomers or low molecular weight polymers irrespective of temperature and/or reaction time. Polymerization of DXO with BF3OEt2 at 70°C gave yields of nearly 100% and molecular weights up to M w = 10,000. The polymerization temperature was increased to 100°C and the reaction time prolonged, which resulted in nearly equal molecular weights as at 70°C but with lower yields, higher polydispersity, and generally not full conversion. In addition, side reactions, such as backbiting, transesterification and thermal degradation, occurred to a larger extent at higher reaction temperatures. Solution polymerization using the same initiators and THF, dioxane, or nitrobenzene as the solvent gave polymers of low molecular weights and of low yields, except with FeCl3 and BF3OEt2. The rates of polymerization were significantly higher in nitrobenzene than in dioxane and THF due to polarity and coordination of these solvents to the growing chain. Comparison of the initiators BF3OEt2 and SnCl4 in solution polymerization showed equal reactivity in nitrobenzene for both of them. The BF3OEt2-initiated systems give polymers with lower molecular weights than SnCl4-initiated systems, but with narrower polydispersity.  相似文献   

13.
The synthetic details of solution polymerization in benzene and bulk polymerization of vinylferrocene are reported. In benzene solutions, with azobisisobutyronitrile (AIBN) as the initiator, small yields of low-polydispersity low molecular weight (M?n ? 5000) polyvinylferrocene is obtained. However, high yields can be obtained by continuous or multiple AIBN addition. Higher molecular weight polymers and binodal polymers can be obtained as the monomer concentration is increased. In bulk polymerizations, yields of 80% can be obtained. The molecular weight increases as temperature decreases from 80 to 60°C in bulk polymerizations, and an increasing amount of insoluble polymer results. The soluble portion is often binodal, the higher molecular weight node consisting of an increasingly branched structure. Lower molecular weight polymer was readily fractionated into narrow fractions from benzene–methanol systems, but higher molecular weight polymer proved impossible to fractionate into narrow fractions due to branching.  相似文献   

14.
Anionic polymerization of methyl methacrylate (MMA) was carried out in tetrahydrofuran (THF) or THF/toluene mixture at ?78°C initiated by triphenylmethyl sodium or lithium as initiators. Highly syndiotactic PMMA of low polydispersity (M w/m n = 1.11–1.17) could be prepared with triphenylmethyl lithium in THF or THF/toluene mixture at ? 78°C. Moreover, PMMA macromonomer having one vinylbenzyl group per polymer chain was prepared by the couplings of living PMMA initiated by triphenylmethyl lithium with p-chloromethyl styrene (CMS) at ?78°C. The coupling reaction of living PMMA initiated by triphenylmethyl sodium with CMS was scarcely occurred.  相似文献   

15.
Bromodichloroacetaldehyde was synthesized by two methods. The first synthesis started from chloral, which was allowed to react with Ph3P and the resultant compound brominated and hydrolyzed to give bromodichloroacetaldehyde in an overall yield of 60%. Purification by repeated distillation from P2O5 gave polymerization grade bromodichloroacetabldehyde. Bromodichloroacetaldehyde could also be synthesized by bromination of dichloroacetaldehyde diethyl acetal. The yields of this synthesis were only 20–30%, and the aldehyde could not be purified readily to give polymerization grade monomer. Bromodichloroacetaldehyde could be homopolymerized at ?30°C with anionic and also some cationic initiators to a polymer which was insoluble and did not melt but degraded to monomer above 200°C. The ceiling temperature of the polymerization was ?15°C in 1M solution. Bromodichloroacetaldehyde could also be copolymerized with isocyanates, primarily aryl isocyanates, and also with chloral.  相似文献   

16.
Living cationic polymerization of alkoxyethyl vinyl ether [CH2?CHOCH2CH2OR; R: CH3 (MOVE), C2H5 (EOVE)] and related vinyl ethers with oxyethylene units in the pendant was achieved by 1-(isobutoxy)ethyl acetate ( 1 )/Et1.5AlCl1.5 initiating system in the presence of an added base (ethyl acetate or THF) in toluene at 0°C. The polymers had a very narrow molecular weight distribution (M?w/M?n = 1.1–1.2) and the M?n proportionally increased with the progress of the polymerization reaction. On the other hand, the polymerization by 1 /EtAlCl2 initiating system in the presence of ethyl acetate, which produces living polymer of isobutyl vinyl ether, yielded the nonliving polymer. When an aqueous solution of the polymers thus obtained was heated, the phase separation phenomenon was clearly observed in each polymer at a definite critical temperature (Tps). For example, Tps was 70°C for poly(MOVE), and 20°C for poly(EOVE) (1 wt % aqueous solution, M?n ~ 2 × 104). The phase separation for each case was quite sensitive (ΔTps = 0.3–0.5°C) and reversible on heating and cooling. The Tps or ΔTps was clearly dependent not only on the structure of polymer side chains (oxyethylene chain length and ω-alkyl group), but also on the molecular weight (M?n = 5 × 103-7 × 104) and its distribution. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
The anionic polymerization of a bridged bicyclic lactam, 2-azabicyclo[2,2,1]heptan-3-one (ABHO), was carried out in bulk and in solution under various reaction conditions. In general bulk polymerization of ABHO was superior to solution polymerization in conversion and degree of polymerization. The resulting polymer exhibited good thermal stability at temperatures up to 300°C. The melting point and decomposition temperature of this polyamide, poly(cyclopentane-1,3-diyliminocarbonyl), were about 307 and 335°C, respectively. Copolymerization of ABHO with 2-pyrrolidone was also made at 30°C and a varying weight percentage of ABHO with potassium pyrrolidonate as catalyst and CS2 as activator. Copolyamides that contained 15 w % of ABHO decomposed at a temperature higher than the melting point by almost 30°C. Thus the thermal stability of copolymers compared with that of nylon-4, was greatly improved. Moisture sorptions of homopolymers and copolymers were always larger than those of other polyamides (nylon 4 and 6) at any relative humidity. Tenacity and elongation at the break of melt-spun fibers obtained from copolyamides that contained 15 w % of ABHO without the drawing and annealing process were 1.25 g/den and 13.1%, respectively.  相似文献   

18.
The polymerization of L - and DL -alanine NCA initiated with n-butylamine was carried out in acetonitrile which is a nonsolvent for polypeptide. The initiation reaction was completed within 60 min.; there was about 10% of conversion of monomer. The number-average degree of polymerization of the polymer obtained increased with the reaction period, and it was found to agree with value of W/I, where W is the weight of the monomer consumed by the polymerization and I is the weight of the initiator used. The initiation reaction of the polymerization was concluded as an attack of n-butylamine on the C5 carbonyl carbon of NCA. The initiation, was followed by a propagation reaction, in which there was attack by an amino endgroup of the polymer on the C5 carbonyl carbon of NCA. The rate of polymerization was observed by measuring the CO2 evolved, and the activation energy was estimated as follows: 6.66 kcal./mole above 30°C. and 1.83 kcal./mole below 30°C. for L -alanine NCA; 15.43 kcal./mole above 30°C., 2.77 kcal./mole below 30°C. for DL -alanine NCA. The activation entropy was about ?43 cal./mole-°K. above 30°C. and ?59 cal./mole-°K. below 30°C. for L -alanine NCA; it was about ?14 cal./mole-°K. above 30°C. and ?56 cal./mole-°K. below 30°C. for DL -alanine NCA. From the polymerization parameters, x-ray diffraction diagrams, infrared spectra, and solubility in water of the polymer, the poly-DL -alanine obtained here at a low temperature was assumed to have a block copolymer structure rather than being a random copolymer of D - and L -alanine.  相似文献   

19.
The anionic polymerization of three monomers, 2-isopropenyl-4,5-dimethyloxazole(I), 2-isopropenylthiazole(II), and 2-isopropenylpyridine(III), was studied in THF. These monomers produced red-colored living polymers on addition of sodium naphthalene or living α-methylstyrene tetramer as an initiator. It was observed that a considerable amount of monomer remained in the respective living polymer–monomer system, indicating that an equilibrium between the polymer and the monomer existed as in the case of α-methylstyrene. At lower temperatures, the conversion of the monomer to the polymer increased. The equilibrium monomer concentrations [Me] were determined at different temperatures, and the heats (ΔH) and the entropies (ΔS°) of polymerization were obtained by plotting In(1/[Me]) against 1/T as ΔH = ?9.4, ?6.8, and ?6.2 kcal/mole, ΔS°S = ?22.9, ?16.5, and ?16.6, eu for I, II, and III, respectively.  相似文献   

20.
The anionic polymerization of 2-ethylhexyl acrylate (EtHA) initiated with the complex butyllithium/lithium-tert-butoxide (BuLi/t-BuOLi) was investigated at ?60°C in a medium of various solvating power, i.e., in mixtures of toluene and tetrahydrofuran and in neat tetrahydrofuran. With increasing amount of THF in the mixture the attainable limiting conversion of polymerization decreases; the monomer can be polymerized quantitatively only in a toluene/THF mixture (9/1). Molecular weights of the polymers thus obtained, their distribution, and initiator efficiency are not appreciably affected by the polymerization medium. The molecular weight distribution of the products is medium-broad (Mw/Mn = 2–2.4), with a hint of bimodality. The 1H-13C-NMR, and IR spectra suggest that during the polymerization there is neither any perceptible reesterification of the polymer with the alkoxide nor transmetalation of the monomer with the initiator. In a suitable medium, autotermination of propagation proceeds to a limited extent only, predominantly via intramolecular cyclization of propagating chains; in a medium with a higher content of polar THF, it prevails and terminates propagation before the polymerization of the monomer has been completed. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号