首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hems RV  Kirkbright GF  West TS 《Talanta》1969,16(7):789-796
A direct spectrophotometric method is proposed for the determination of sulphate, based on its ability to catalyse the slow reaction between Methylthymol Blue and zirconium in slightly aged solution. The procedure is operated in the same way as a normal spectrophotometric method but with stricter control of timing. The interference of 100-fold excesses of 40 other ions was studied. Of these, Ce(III), Sr, Fe(III), Th, Sn(II), U(V), Mn(II), Sb(III), Se(IV), Bi(III), Te(IV), SO(3)(2-), F(-), PO(4)(3-), AsO(4)(3-), S(2-), tartrate, oxalate and citrate interfered. Cationic interferences may be removed by cation-exchange. The interference of equimolar ratios of arsenate, fluoride and phosphate may be removed by preliminary treatment with magnesium oxide. Sulphate may be determined in the range 0.1-2.4 ppm by the recommended procedure with a net molar absorptivity of 2.0 x 10(4) at 586 nm. The colour development time is 60 min.  相似文献   

2.
Uchiyama S  Muto G 《Talanta》1985,32(2):150-152
A new spectrophotometric method for nitric oxide is proposed, based on formation of the nitrosyl-ethylenediaminetetra-acetatoiron(II) complex [Fe(II)NO-edta] by absorption of NO in Fe(II)edta solution and spectrophotometric determination of the NO(-)(2) produced by oxidation of the Fe(II)NO-edta complex by potassium bromate. The oxidation is easily performed completely and the absorption efficiency for 10.1-102.0 ppm NO (flow-rate, 100 ml/min) is nearly 100%. The detection limit is about 3 ppm for a sampling absorption time of 30 min.  相似文献   

3.
Optical spectroscopy and nanosecond flash photolysis (Nd:YAG laser, 355 nm, pulse duration 5 ns, mean energy 5 mJ/pulse) were used to study the photochemistry of Fe(III)(C2O4)3(3-) complex in aqueous solutions. The main photochemical process was found to be intramolecular electron transfer from the ligand to Fe(III) ion with formation of a primary radical complex [(C2O4)2Fe(II)(C2O4(*))](3-). The yield of radical species (i.e., CO2(*-) and C2O4(*-)) was found to be less than 6% of Fe(III)(C2O4)3(3-) disappeared after flash. [(C2O4)2Fe(II)(C2O4(*))](3-) dissociates reversibly into oxalate ion and a secondary radical complex, [(C2O4)Fe(II)(C2O4(*))](-). The latter reacts with the initial complex and dissociates to Fe(II)(C2O4) and oxalate radical. In this framework, the absorption spectra and rate constants of the reactions of all intermediates were determined.  相似文献   

4.
A hybrid film of WO(3)/tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+))/poly(sodium 4-styrenesulfonate) (PSS) (denoted as a WRP hybrid film) was prepared as a base layer on an indium tin oxide electrode substrate by cathodic electrodeposition from a colloidal ternary solution containing peroxotungstic acid, [Ru(bpy)(3)](2+), and PSS. Prussian blue, Fe(III) (4)[Fe(II)(CN)(6)](3) (Fe(II)-Fe(III)) was cathodically electrodeposited on the WRP hybrid film from a Berlin brown (Fe(III)-Fe(III)) colloidal solution to give a WRP/Fe(II)-Fe(III) bilayer film. Spectrocyclic voltammetry measurement of the WRP/Fe(II)-Fe(III) bilayer film reveals that Prussian white (Fe(II)-Fe(II)) is oxidized to Fe(II)-Fe(III) by electrogenerated Ru(III), and Fe(II)-Fe(III) is re-reduced to Fe(II)-Fe(II) by electrogenerated H(x)WO(3). Visible-light irradiation of the WRP hybrid film generates a small photocurrent (approximately 8 nA cm(-2)) at 0.4 V of an applied potential, whereas irradiation of the WRP/Fe(II)-Fe(II) bilayer film (Fe(II)-Fe(III) is electrochemically reduced to the Fe(II)-Fe(II) state) significantly generates a steady photoanodic current of 2.0-1.1 microA cm(-2) under the same conditions, thus demonstrating that the photoanodic current is produced by the layered Fe(II)-Fe(II) film. The photoaction spectrum of the bilayer film reveals that the photoanodic current is based on the photoexcitation of [Ru(bpy)(3)](2+). The photogeneration of Fe(II)-Fe(III) from Fe(II)-Fe(II) is shown by the absorption spectral change of the bilayer film on irradiation. These results corroborate the notion that Fe(II)-Fe(II) is oxidized by photogenerated Ru(III) to generate Fe(II)-Fe(III). However, the rate of photogeneration of Fe(II)-Fe(III) is slow, which could be ascribed to the fast back electron transfer (ET) from WO(3) to Ru(III), comparable with the forward ET from Fe(II)-Fe(II) to Ru(III). The fast back ET could be a crucial problem for the [Ru(bpy)(3)](2+)-sensitized reaction in the hybrid film.  相似文献   

5.
Surface sensitive X-ray reflectivity (XR), fluorescence (XF), and grazing incidence X-ray diffraction (GIXD) experiments were conducted to determine the accumulation of ferric iron Fe (III) or ferrous iron Fe (II) under dihexadecyl phosphate (DHDP) or arachidic acid (AA) Langmuir monolayers at liquid/vapor interfaces. Analysis of the X-ray reflectivity and fluorescence data of monolayers on the aqueous subphases containing FeCl(3) indicates remarkably high levels of surface-bound Fe (III) in number of Fe(3+) ions per molecule (DHDP or AA) that exceed the amount necessary to neutralize a hypothetically completely deprotonated monolayer (DHDP or AA). These results suggest that nano-scale iron (hydr) oxide complexes (oxides, hydroxides or oxyhydroxides) bind to the headgroups and effectively overcompensate the maximum possible charges at the interface. The lack of evidence of in-plane ordering in GIXD measurements and strong effects on the surface-pressure versus molecular area isotherms indicate that an amorphous network of iron (hydr) oxide complexes contiguous to the headgroups is formed. Similar experiments with FeCl(2) generally resulted with the oxidation of Fe (II)-Fe (III) which consequently leads to ferric Fe (III) complexes binding albeit with less iron at the interface. Controlling the oxidation of Fe (II) changes the nature and amount of binding significantly. The implications to biomineralization of iron (hydr) oxides are briefly discussed.  相似文献   

6.
The reaction of iron(III) (meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (Fe(III)TMPyP) with nitric oxide (NO) was studied by electronic absorption spectroscopy, ESR, and electrochemical and spectroelectrochemical techniques in aqueous solutions with pH from 2.2 to 12.0. Fe(III)TMPyP has been found to undergo a reductive nitrosylation in all pHs, and the product of nitric oxide binding to the porphyrin has been determined as iron(II) porphyrin nitrosyl complex ([Fe(II)(NO)TMPyP]). The rate of the reductive nitrosylation exhibits a tendency to get faster with increase in pH. An intermediate species was observed around neutral pH by spectroelectrochemical technique and was proposed to be the iron(II) nitrosyl complex of the mu-oxo dimeric form of FeTMPyP, which is known to be a predominant in neutral solutions.  相似文献   

7.
The synthesis, structure, and physical properties of a novel series of oxalate-based bimetallic magnets obtained by using the Ir(ppy)2(bpy)]+ cation as a template of the bimetallic [M(II)M(III)(ox)3]- network are reported. The compounds can be formulated as [Ir(ppy)2(bpy)][M(II)Cr(III)(ox)3] x 0.5 H2O (M(II) = Ni, Mn, Co, Fe, and Zn) and [Ir(ppy)2(bpy)]-[M(II)Fe(III)(ox)3] x 0.5 H2O (M(II) = Fe, Mn) and crystallize in the chiral cubic space group P4(1)32 or P4(3)32. They show the well-known 3D chiral structure formed by M(II) and M(III) ions connected through oxalate anions with [Ir(ppy)2(bpy)]+ cations and water molecules in the holes left by the oxalate network. The M(II)Cr(III) compounds behave as soft ferromagnets with ordering temperatures up to 13 K, while the Mn(II)Fe(III) and Fe(II)Fe(III) compounds behave as a weak ferromagnet and a ferrimagnet, respectively, with ordering temperatures of 31 and 28 K. These values represent the highest ordering temperatures so far reported in the family of 3D chiral magnets based on bimetallic oxalate complexes.  相似文献   

8.
To examine possible models for the g = 2.006 resonance seen when the hydroxylated heme-heme oxygenase complex in the Fe(III) state is treated with CO, the reactivities of CO and reducing agents with (py)(2)Fe(III)(OEPO) and [Fe(III)(OEPO)](2) (OEPO is the trianion of octaethyl-meso-hydroxyporphyrin) have been examined. A pyridine solution of (py)(2)Fe(III)(OEPO) reacts in a matter of minutes with zinc amalgam (or with hydrazine) under an atmosphere of dioxygen-free dinitrogen to produce bright-red (py)(2)Fe(II)(OEPOH).2py.0.33H(2)O, which has been isolated in crystalline form. The (1)H NMR spectrum of (py)(2)Fe(II)(OEPOH) in a pyridine-d(5) solution is indicative of the presence of a diamagnetic compound, and no EPR resonance was observed for this compound. Treatment of a solution of (py)(2)Fe(II)(OEPOH) in pyridine-d(5) with carbon monoxide produces spectral changes after a 30 s exposure that are indicative of the formation of diamagnetic (OC)(py)Fe(II)(OEPOH). Treatment of a green pyridine solution of (py)(2)Fe(III)(OEPO) with carbon monoxide reveals a slow color change to deep red over a 16 h period. Although a resonance at g = 2.006 was observed in the EPR spectrum of the sample during the reaction, the isolated product is EPR silent. The spectroscopic features of the final solution are identical to those of a solution formed by treating (py)(2)Fe(II)(OEPOH) with carbon monoxide. Addition of hydrazine to solutions of (OC)(py)Fe(II)(OEPOH) produces red, diamagnetic (OC)(N(2)H(4))Fe(II)(OEPOH).py in crystalline form. The X-ray crystal structures of (py)(2)Fe(II)(OEPOH).2py.0.33H(2)O and (OC)(N(2)H(4))Fe(II)(OEPOH).py have been determined. Solutions of diamagnetic (OC)(N(2)H(4))Fe(II)(OEPOH).py and (OC)(py)Fe(II)(OEPOH) are extremely air sensitive and are immediately converted in a pyridine solution into paramagnetic (py)(2)Fe(III)(OEPO) in the presence of dioxygen.  相似文献   

9.
The reaction of the water-soluble Fe(III)(TMPS) porphyrin with CN(-) in basic solution leads to the stepwise formation of Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2). The kinetics of the reaction of CN(-) with Fe(III)(TMPS)(CN)(H(2)O) was studied as a function of temperature and pressure. The positive value of the activation volume for the formation of Fe(III)(TMPS)(CN)(2) is consistent with the operation of a dissociatively activated mechanism and confirms the six-coordinate nature of the monocyano complex. A good agreement between the rate constants at pH 8 and 9 for the formation of the dicyano complex implies the presence of water in the axial position trans to coordinated cyanide in the monocyano complex and eliminates the existence of Fe(III)(TMPS)(CN)(OH) under the selected reaction conditions. Both Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2) bind nitric oxide (NO) to form the same nitrosyl complex, namely, Fe(II)(TMPS)(CN)(NO(+)). Kinetic studies indicate that nitrosylation of Fe(III)(TMPS)(CN)(2) follows a limiting dissociative mechanism that is supported by the independence of the observed rate constant on [NO] at an appropriately high excess of NO, and the positive values of both the activation parameters ΔS(?) and ΔV(?) found for the reaction under such conditions. The relatively small first-order rate constant for NO binding, namely, (1.54 ± 0.01) × 10(-2) s(-1), correlates with the rate constant for CN(-) release from the Fe(III)(TMPS)(CN)(2) complex, namely, (1.3 ± 0.2) × 10(-2) s(-1) at 20 °C, and supports the proposed nitrosylation mechanism.  相似文献   

10.
Parkash R  Bansal R  Rehani SK  Dixit S 《Talanta》1998,46(6):1573-1576
A simple, rapid, sensitive and selective method for the microgram detection and spectrophotometric determination of EDTA in water, human urine and detergents, based on its reaction with Co(II) and phosphomolybdic acid at pH 0.5–2.0 is reported. Absorbance is measured against Co(II)–phosphomolybdic acid reference solution at 750 nm. The effect of time, temperature, pH and Co(II) or phosphomolybdic acid concentration is studied, and optimum operating conditions are established. Beer's law is applicable in the concentration range 0.3–1.9 μg ml−1 of 10−5M EDTA. Its detection limit is 0.14 μg in the solution phase and 0.03 μg in the resin phase. The relative standard deviation is ±0.13 μg. Ag(I), Zn(II), Cu(II), Ni(II), Pb(II), Cd(II), Ca(II), Mg(II), Fe(III), Cr(III), U(VI), chloride, nitrite, phosphate, oxalate, borate and amino acids do not interfere.  相似文献   

11.
A spectrophotometric method for the determination of lactic acid in milk samples based on the use of a photochemical reaction carried out in a Flow Injection System is proposed. Determination is based on the reaction between lactic acid and Fe(III), which is reduced to Fe(II) in the presence of UV light, being the latter made to react with o-phenanthroline. The complex formed between Fe(II) and o-phenanthroline, Fe(o-phen)(3)(2+) (ferroin) is a coloured compound and it can be spectrophotometrically monitored at 512 nm. The method shows a linear range between 0.5 and 50 mug ml(-1) with a limit of detection of 0.16 mug ml(-1). The precision was +/-2.15 expressed as relative standard deviation (n=11) and the sample throughput of 30 samples h(-1). Also non-linear adjustments have been made and validated by ANOVA. The proposed method has been applied to the determination of lactic acid in both synthetic and milk samples.  相似文献   

12.
The reaction of (NBu4)3[V(III)(ox)3] (1, ox = oxalate) and M(II) (M = Fe, Co, Ni, Cu) ions in MeCN, leads to the isolation of V-based coordination polymers of [N(n-Bu)4][Fe(II)V(II)I(ox)3].0.30[[N(n-Bu)4](BF4)] (2), [N(n-Bu)4][Co(II)V(III)(ox)3].0.75[[N(n-Bu)4](BF4)] (3), [N(n-Bu)4][Ni(II)V(III)(ox)3].0.20[[N(n-Bu)4](BF4)].0.20MeCN (4), and [N(n-Bu)4][Cu(II)V(III)(ox)2](BF4)2 (5) composition. Due to the lability of [V(III)(ox)3]3- to dissociate ox2-, these compounds cannot be prepared from aqueous media. 5 is best described as [N(n-Bu)4][V(III)Cu(II)(ox)2](BF4)2, and 2, 3, 4, and 5 are proposed to have a layered (2-D) motif for the MM(ox)x (x = 2, 3) extended framework. The [V(III)Cu(II)(ox)2] composition of 5 is reported for the first time for a bimetallic oxalate. 2 shows a weak antiferromagnetic interaction between Fe(II), S = 2 and V(III), S = 1 ions (theta = -9.4 K) within the 2-D layers. 3 and 5 do not magnetically order above 2 K. 4 magnetically order as ferromagnets below 2.55 K [taken as the onset of magnetization in chi'(T)], and has a glass transition temperature (chi'(max) at 1000 Hz) at 2.26 K.  相似文献   

13.
This study reports on the application of surface complexation modeling to interpret observed kinetic trends for Fe(II) redox reactions with model nitroaromatic (4-chloronitrobenzene) and oxime carbamate (oxamyl) contaminants in aqueous TiO(2(s)) suspensions. Pseudo-first-order rate constants for reduction of the two probe contaminants (k(red), s(-1)) vary by several orders of magnitude with changing conditions (100-500 microM Fe(II), 0-15 g L(-1) TiO(2(s)), pH 2-9), but the relationship between reaction rates and Fe(II) speciation differs considerably for the two contaminants. For oxamyl, k(red) measurements are most strongly correlated with the volumetric total adsorbed Fe(II) concentration (moles Fe(II) adsorbed per liter of TiO(2(s)) suspension), whereas k(red) measurements for 4-chloronitrobenzene are proportional to the concentration of the hydrolyzed Fe(II) surface complex (equivalent TiOFe(II)OH(0)). The differing trends demonstrate that Fe(II) redox reactivity at the aqueous/TiO(2(s)) interface is influenced, in part, by specific molecular interactions with the target oxidant. Results are also geochemically relevant in that they demonstrate unambiguously that mononuclear Fe(II)-metal (hydr)oxide surface complexes are sufficiently reactive species to reduce nitroaromatic contaminants, an issue that remained open following earlier studies in Fe(III) (hydr)oxide suspensions because structural Fe(II) species are simultaneously present in such systems because of interfacial Fe(II)-to-Fe(III) electron transfer processes that occur on Fe(II) adsorption.  相似文献   

14.
The radiation chemical analogue of the light induced formation of Turnbull blue, K[Fe(II)Fe(III)(CN)6], from K3[Fe(III)(oxalate)3] and K3[Fe(III)(CN)6] was investigated by pulse radiolysis. The kinetic analysis revealed a two-step process: after a pseudo-first order reaction an autocatalytic formation of Turnbull blue takes place. The rate coefficient of the first step is k8=1.42×105 M−1 s−1. The incubation time of precipitation was also determined.  相似文献   

15.
The syntheses, structures, and magnetic properties of compounds of formula [Fe(III)(5-Clsal(2)-trien)][Mn(II)Cr(III)(ox)(3)]·0.5(CH(3)NO(2)) (1), [Fe(III)(5-Brsal(2)-trien)][Mn(II)Cr(III)(ox)(3)] (2), and [In(III)(5-Clsal(2)-trien)][Mn(II)Cr(III)(ox)(3)] (3) are reported. The structure of the three compounds, which crystallize in the orthorhombic P2(1)2(1)2(1) chiral space group, presents a 3D chiral anionic network formed by Mn(II) and Cr(III) ions linked through oxalate ligands with inserted [Fe(III)(5-Clsal(2)-trien)](+), [Fe(III)(5-Brsal(2)-trien)](+), and [In(III)(5-Clsal(2)-trien)](+) cations. The magnetic properties indicate that the three compounds undergo long-range ferromagnetic ordering at ca. 5 K. On the other hand, the inserted Fe(III) cations undergo a partial spin crossover in the case of 1 and 2.  相似文献   

16.
A flow injection procedure for the sequential spectrophotometric determination of iron(II) and iron(III) in pharmaceutical products is described. The method is based on the catalytic effect of iron(II) on the oxidation of iodide by bromate at pH = 4.0. The reaction was monitored spectrophotometrically by measuring the absorbance of produced triiodide ion at 352 nm. The activating effect for the catalysis of iron(II) was extremely exhibited in the presence of oxalate ions, while oxalate acted as a masking agent for iron(III). The iron(III) in a sample solution could be determined by passing through a Cd-Hg reductor column introduced in the FIA system to reduce iron(III) to iron(II), which allows total iron determination. Under the optimum conditions, iron(II) and iron(III) could be determined over the range of 0.05 - 5.0 and 0.10 - 5.0 microg ml(-1), respectively with a sampling rate of 17 +/- 5 h(-1). The experimental limits of detection were 0.03 and 0.04 microg ml(-1) for iron(II) and iron(III), respectively. The proposed method was successfully applied to the speciation of iron in pharmaceutical products.  相似文献   

17.
A combined method for the preconcentration and selective spectrophotometric determination of both valencies of iron, i.e., Fe(II) and Fe(III), down to 0.4 mug l(-1) has been developed. Iron(III) from synthetic and natural water samples has been concentrated on a melamine-formaldehyde resin at pH 5; iron(II) was not retained under identical conditions. The oxidized iron was concentrated on a second resin column. The iron in both columns was eluted with 1 M HCl solution and separately analyzed by the 1,10-phenanthroline-citrate spectrophotometric method. The effect of pH, adsorption and elution rates, and interferences on the developed procedure were investigated. Metal ions that can be retained by the resin at moderate concentrations, e.g., Al(3+), do not cause interference in more dilute solutions encountered in natural water samples. At least 160-fold volume enrichment can be easily obtained using an adsorption flowrate of 50 ml min(-1). A hydrothermal water sample was analyzed by the recommended procedure and by a literature method, and the results were statistically compared by t- and F-tests.  相似文献   

18.
An amperometric flow biosensor for oxalate determination in urine samples after enzymatic reaction with oxalate oxidase immobilized on a modified magnetic solid is described. The solid was magnetically retained on the electrode surface of an electrode modified with Fe (III)-tris-(2-thiopyridone) borate placed into a sequential injection system preceding the amperometric detector. The variables involved in the system such as flow rate, aspired volumes (modified magnetic suspension and sample) and reaction coil length were evaluated using a Taguchi parameter design. Under optimal conditions, the calibration curve of oxalate was linear between 3.0-50.0 mg·L-1, with a limit of detection of 1.0 mg·L-1. The repeatability for a 30.0 mg·L-1 oxalate solution was 0.7%. The method was validated by comparing the obtained results to those provided by the spectrophotometric method; no significant differences were observed.  相似文献   

19.
The lipoxygenase mimic [Fe(III)(PY5)(OH)](CF3SO3)2 is synthesized from the reaction of [Fe(II)(PY5)(MeCN)](CF3SO3)2 with iodosobenzene, with low-temperature studies suggesting the possible intermediacy of an Fe(IV) oxo species. The Fe(III)-OH complex is isolated and identified by a combination of solution and solid-state methods, including EPR and IR spectroscopy. [Fe(III)(PY5)(OH)](2+) reacts with weak X-H bonds in a manner consistent with hydrogen-atom abstraction. The composition of this complex allows meaningful comparisons to be made with previously reported Mn(III)-OH and Fe(III)-OMe lipoxygenase mimics. The bond dissociation energy (BDE) of the O-H bond formed upon reduction to [Fe(II)(PY5)(H2O)]2+ is estimated to be 80 kcal mol(-1), 2 kcal mol(-1) lower than that in the structurally analogous [Mn(II)(PY5)(H2O)]2+ complex, supporting the generally accepted idea that Mn(III) is the thermodynamically superior oxidant at parity of coordination sphere. The identity of the metal has a large influence on the entropy of activation for the reaction with 9,10-dihydroanthracene; [Mn(III)(PY5)(OH)]2+ has a 10 eu more negative DeltaS++ value than either [Fe(III)(PY5)(OH)]2+ or [Fe(III)(PY5)(OMe)]2+, presumably because of the increased structural reorganization that occurs upon reduction to [Mn(II)(PY5)(H2O)]2+. The greater enthalpic driving force for the reduction of Mn(III) correlates with [Mn(III)(PY5)(OH)]2+ reacting more quickly than [Fe(III)(PY5)(OH)]2+. Curiously, [Fe(III)(PY5)(OMe)]2+ reacts with substrates only about twice as fast as [Fe(III)(PY5)(OH)]2+, despite a 4 kcal mol(-1) greater enthalpic driving force for the methoxide complex.  相似文献   

20.
A novel method for the selective determination of Fe(II) and Fe(III) in water using 2-nitroso-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol (PSAP) was developed. QAE-Sephadex anion exchanger packed in a flow-through cell was used as a medium not only for both the concentration and the spectrophotometric measurements of the Fe-PSAP complex, but also for reduction of the Fe(III)-PSAP complex. The PSAP complex of Fe(II) or Fe(III) was strongly adsorbed on the anion exchanger in a weakly acidic to weakly basic region, but the Fe(III) complex was readily and completely reduced to the Fe(II) complex only in a neutral to weakly alkaline region in the solid phase. These properties were utilized to determine the Fe(II) and total Fe concentration without the addition of any reducing agent. The detection limits (3σ) were 0.18 ng for Fe(II) and 0.18 ng for total Fe using a 3.2-cm(3) sample solution. The present method is applicable to the determination of dissolved iron species present at μg dm(-3) levels in natural water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号