首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环糊精聚合物的分子包合作用及在酶电极中的应用   总被引:10,自引:0,他引:10  
吴辉煌  吴宝璋 《电化学》1998,4(2):210-216
伏安法用于研究环糊精预聚合物的分子包合作用.红外光谱实验表明环糊精预聚合物与戊二醛缩聚生成的聚合物带有悬挂的羰基,后者能使葡萄糖氧化酶共价固定化.由于分子包合作用,电子受体可存储在含酶的环糊精聚合物膜中,从而提高了酶膜中电子受体的浓度又减少了电子受体的用量.用TTF等作电子受体,可实现酶和电子受体在环糊精聚合物中的同时固定化.环糊精聚合物膜中的组成和膜厚度可以控制,为酶电极的基础研究工作提供了方便.  相似文献   

2.
以二环己基碳化二亚胺为活化剂将葡萄糖氧化酶(GOD)共价键接在玻碳电极上, 伏安实验观察到酶与电极基体的直接电子传递, 有观电子传递速度常数约为1s^-^1, 过程归因于全酶中辅基FAD的氧化还原转变。Ag^+离子的存在强烈地阻碍酶辅基的还原, 这与该离子抑制酶活性的机理可能有联系。Ag^+的抑制作用可由EDTA处理或电化学处理而解除, GOD电极对氧和苯醌的电还原有催化作用。测定了苯醌同还原态GOD的化学反应速度常数, 并讨论用苯醌代替氧作为生物电催化中的电子传递体的优点。  相似文献   

3.
吴宝璋  吴辉煌 《化学学报》1998,56(4):364-370
研究了水溶性环糊精预聚合物的存在对苯醌/氢醌体系在铂电极上氧化还原行为的影响, 根据伏安曲线讨论了该预聚合物与苯醌的分子包合作用。环糊精预聚合物与戊二醛缩聚反应而形成的不溶性聚合物膜用于葡萄糖氧化酶的固定化, 以制得新型的第二代葡萄糖电极。由于分子包合作用, 作为电子受体的苯醌在含酶的环糊精聚合物膜中具有较高的浓度, 从而加速了固定化酶的电子传递。测定了酶电极上BQ反应的动力学参数。  相似文献   

4.
《Electroanalysis》2003,15(11):975-981
The redox chemistry of several substituted benzoquinones was investigated by cyclic voltammetry at a glassy carbon electrode and candidates for inclusion in a mediated biosensor for use in flow analysis were selected on the basis of oxidation potential, electrochemical reversibility and solubility. Glucose sensors constructed by sequential deposition onto a carbon pellet of 2,6‐dimethyl‐1,4‐benzoquinone, 2,3,5,6‐tetramethyl‐1,4‐benzoquinone or phenyl‐1,4‐benzoquinone mediator solution, followed by glucose oxidase in polyvinylalcohol‐Nafion solution, were tested for response to glucose using flow injection analysis. Sensors prepared from 2,6‐dimethyl‐1,4‐benzoquinone gave highest sensitivity, with a linear range of response to glucose of 2.5–40 mM. The use of an enzyme‐free comparative electrode to eliminate the response from interferents was investigated.  相似文献   

5.
将葡萄糖氧化酶(GOD)固定在α-环糊精聚合物中,而电子传递体分子被包含在环糊精腔穴中。固定化酶膜的FTIR测定表明,GOD与环糊精聚合物发生共价连接。制备了含电子传递体的不同GOD酶电极并比较了它们的性能。含四硫代富瓦烯的酶电极具有良好的电流响应特性,可望成为第二代葡萄糖酶电极的新构型。  相似文献   

6.
A polysiloxane and an acrylonitrile–ethylene copolymer with covalently attached p-hydroquinone/benzoquinone moieties were prepared and tested as electron transfer relay systems in amperometric glucose biosensors. Using experiments involving cyclic voltammetry and stationary potential measurements, it was shown that the polysiloxane relay system can efficiently mediate electron transfer from reduced glucose oxidase to a conventional carbon-paste electrode. Sensors containing this polymeric relay system and glucose oxidase respond rapidly to low (<0.1 mm) glucose concentrations, with steady state current responses achieved in less than 1 min. The acrylonitrile–ethylene copolymer was found to be less efficient than the polysiloxane system at mediating the electron transfer from reduced glucose oxidase to the electrode. The dependence of the sensor response on the nature of the polymer backbone is discussed.  相似文献   

7.
In this study, electrochemical characterisation of glucose oxidation has been carried out in solution and using enzyme polymer electrodes prepared by mutant glucose oxidase (B11-GOx) obtained from directed protein evolution and wild-type enzymes. Higher glucose oxidation currents were obtained from B11-GOx both in solution and polymer electrodes compared to wt-GOx. This demonstrates an improved electrocatalytic activity towards electrochemical oxidation of glucose from the mutant enzyme. The enzyme electrode with B11-GOx also showed a faster electron transfer indicating a better electronic interaction with the polymer mediator. These encouraging results have shown a promising application of enzymes developed by directed evolution tailored for the applications of biosensors and biofuel cells.  相似文献   

8.
《Electroanalysis》2004,16(18):1542-1549
The immobilization of enzymes on an electrode surface is of great importance in bioelectrochemistry. The entrapment of enzymes into a polymer matrix is simple and a speedy technique for the production of biosensors. This procedure of enzyme immobilization by electropolymerization has a great significance in fabrication of micro sensors in the preparation of multiplayer devices. In current study, glucose oxidase enzyme that is specific for the glucose determination was entrapped into polypyrrole matrix containing p‐benzoquinone in PIPES buffer and glucose sensitivity of the biosensor was investigated. Then, artificial neural network analysis was done for the nonlinear calibration plot. This implementation can be used for the sensor failure detection, as well. The estimation power of the neural network used in the direct and inverse calibration modelling was examined by statistical methods. It presented the good performance for the estimation power.  相似文献   

9.
A cyclic voltammetric simulation that can be applied to an electrochemically mediated enzyme reaction involving any substrate and mediator concentration was developed. Concentration polarization of the substrate in the vicinity of an electrode was considered as well as mediator concentration. Reversible electrochemical reaction with one electron followed by an enzyme reaction with two electrons was modeled. The differential equations for the mediator and substrate were solved using digital simulation techniques. The calculated cyclic voltammograms showed prepeaks when there was a low substrate concentration, high mediator concentration, and high enzyme activity. The prepeak was experimentally observed in the case of an enzyme electrode co-immobilized with a redox polymer. The enzyme electrode loaded at high redox polymer and high enzyme content showed a prepeak at low substrate concentration in the cyclic voltammogram.  相似文献   

10.
Catalysis of the electrochemical oxidation of glucose by glucose oxidase with a single electron mediator (cosubstrate) may be used to transform mixtures of concentrated industrial sugars. How the high viscosity of such media may affect the enzymatic reaction and the transport of the mediator can be mimicked by addition of large concentrations of sucrose to glucose solutions. Cyclic voltammetry then provides a simple means of investigating the effect of an increased viscosity on the kinetics of the enzymatic reaction and the diffusion of the mediator. The diffusion coefficient of the mediator is decreased 10 times by addition of 1.6 M sucrose. At pH 8, in the presence of the same concentration of sucrose, the catalytic activity of the enzyme towards its substrate is only slightly affected. A 35% decrease of the glucose Michaelis constant is observed. The reaction of the reduced enzyme with the cosubstrate is six times slower and the mediator Michaelis constant undergoes a three-fold increase. It follows that glucose oxidase remains an efficient catalyst in such viscous media.  相似文献   

11.
Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H2O2, the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 μM and an apparent Michaelis–Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples.  相似文献   

12.
An electrically contacted glucose dehydrogenase (GDH) enzyme electrode is fabricated by the reconstitution of the apo-GDH on pyrroloquinoline quinone (PQQ)-functionalized Au nanoparticles (Au-NPs), 1.4 nm, associated with a Au electrode. The Au-NPs functionalized with a single amine group were attached to the Au surface by 1,4-benzenedithiol bridges, and PQQ was covalently linked to the Au-NPs. The apo-GDH was then reconstituted on the PQQ cofactor sites. The surface coverage of GDH corresponded to 1.4 x 10(-12) mol cm(-2). The reconstituted enzyme revealed direct electrical contact with the electrode surface, and the bioelectrocatalytic oxidation of glucose occurred with a turnover number of 11,800 s(-1). In contrast, a system that included the covalent attachment of GDH to the PQQ-Au-NPs monolayer in a random, nonaligned, configuration revealed lack of electrical communication between the enzyme and the electrode, albeit the enzyme existed in a bioactive structure. The bioelectrocatalytic function of the later system was, however, activated by the diffusional electron mediator 2,6-dichlorophenol-indophenol. The results imply that the alignment of GDH on a Au-NP through the reconstitution process leads to an electrically contacted enzyme-electrode, where the Au-NP acts as a charge-transfer mediator.  相似文献   

13.
A carbon-paste chemically modified with glucose oxidase and a ferrocene-containing siloxane polymer was further modified by coating the electrode surface with a poly(ester-sulfonic acid) cation-exchanger, Eastman AQ-29D. The polymer is obtained as a homogeneous aqueous dispersion at pH 5–6; when dried, the polymer coating is not water-soluble. The coating was shown not to be detrimental to the enzyme activity but to prevent electrochemically active anionic interferents such as ascorbate and urate from reaching the electrode surface. The polymer coating also prevented glucose oxidase from leaking out of the carbon paste into the contacting solution and protected the electrode surface from fouling agents present in urine and bovine serum albumin. Uncoated electrodes lost some 10-2-15% of their original response to glucose after storage in buffer for three weeks whereas the response of the coated electrodes remained constant. Calibration curves for glucose were strictly linear up to about 5 mM for uncoated and up to 20 mM for coated electrodes. The response current to glucose was not decreased after coating.  相似文献   

14.
A carbon/PVC-COOH/ferrocene composite electrode used for the determination of glucose has been prepared. The ferrocene acted as mediator was incorporated into the PVC-COOH polymer and the leakage could be prevented. The presence of carboxyl groups on the electrode surface allowed immobilizing enzyme via EDC and NHS. The ratio of PVC-COOH to graphite powder (w/w) has been studied. Amperometric determination of glucose has been performed at potential of 0.30 V vs SCE. The response time was 〈 15 s. The linear response range was of 0.1-20 mmol/L with a detection limit of 48μmol/L.  相似文献   

15.
A new methyl viologen-mediated amperometric enzyme electrode sensitive to glucose has been developed using carbon film electrode substrates. Carbon film electrodes from resistors fabricated by pyrolytic deposition of carbon were modified by immobilization of glucose oxidase through cross-linking with glutaraldehyde in the presence of bovine serum albumin. The mediator, methyl viologen, was directly immobilised with the enzyme together with Nafion cation-exchange polymer. The electrochemistry of the glucose oxidase/methyl viologen modified electrode was investigated by cyclic voltammetry and by electrochemical impedance spectroscopy. The biosensor response to glucose was evaluated amperometrically; the detection limit was 20 μM, the linear range extended to 1.2 mM and the reproducibility of around 3%. When stored in phosphate buffer at 4 °C and used every day, the sensor showed good stability over more several weeks.  相似文献   

16.
Kinetics of redox polymer-mediated enzyme electrodes   总被引:1,自引:0,他引:1  
Oxygen-reducing enzyme electrodes are prepared from laccase of Trametes versicolor and a series of osmium-based redox polymer mediators covering a range of redox potentials from 0.11 to 0.85 V. Experimentally obtained current density generated by the film electrodes is analyzed using a one-dimensional numerical model to obtain kinetic parameters. The bimolecular rate constant for mediation is found to vary with mediator redox potential from 250 s(-1) M(-1) when mediator and enzyme are close in redox potential to 9.4 x 10(4) s(-1) M(-1) when the redox potential difference is large. The value of the bimolecular rate constant for the simultaneously occurring laccase-oxygen reaction is found to be 2.4 x 10(5) s(-1) M(-1). The relationship between mediator-enzyme overpotential and bimolecular rate constant is used to determine the optimum mediator redox potential for maximum power output of a hypothetical biofuel cell with a planar cathode and a reversible hydrogen anode. For laccase of T. versicolor (E(e)(0) = 0.82), the optimum mediator potential is 0.66 V (SHE), and a molecular structure is presented to achieve this result.  相似文献   

17.
利用循环伏安法和原位红外反射光谱法研究了pH=7.0的磷酸盐缓冲溶液中聚邻苯二胺(PPD)膜电极的电化学行为。在比0.0V(SCE)负的电位区,PPD呈现氧化还原活性,氧化还原过程伴有H2PO4-离子的嵌入和脱出,证明聚合物带有正电荷。苯醌在该膜电极上的还原反应发生在PPI)的电化学活性电位区内。旋转圆盘电极实验表明,苯配可渗入膜内并与聚合物交换电子。根据PPD为导电聚合物的模型分析了膜电极上苯配还原的动力学并讨论了对其影响的因素。  相似文献   

18.
Porous composite membranes of regenerated silk fibroin and poly(vinyl alcohol) were prepared by adding polyethyleneglycol to the composite solution to reduce the mass-transfer resistance to the diffusion of substrate material transport; their surfaces were visualized with scanning electron microscopy. An amperometric glucose biosensor employing Meldola blue dispersed in polyester ionomer as electron transfer mediator was prepared to test the feasibility and workability of the composite membrane as immobilization matrix for glucose oxidase. The cationic exchange property of the polyester ionomer was employed to provide high local concentrations of Meldola blue (MB+) in the polymer film via ion exchange. Performance and characteristics of the glucose biosensor were evaluated with respect to response time, detection limit, applied potential, thickness of polyester ionomer membrane, pH and temperature. The glucose biosensor possesses a variety of advantages including easy maintenance of enzyme, simplicity of construction, fast response time and high stability. Received: 13 May 1996 / Revised: 30 July 1996 / Accepted: 2 August 1996  相似文献   

19.
The polymer redox mediator, poly(neutral red) (PNR), has been synthesised and characterised electrochemically to investigate the best electropolymerisation and mediation conditions for application in enzyme biosensors and to clarify the mechanism of action. Neutral red was electropolymerised by potential cycling on carbon film electrode substrates by allowing the monomer to be oxidised during the full 20 cycles of polymerisation or reducing the positive limit of the potential window after the first 2 cycles to impede monomer oxidation with a view to obtaining longer polymer chains and a lesser degree of branching. Comparison was made with glassy carbon substrates. The PNR films on carbon film electrodes were characterised using cyclic voltammetry and electrochemical impedance spectroscopy, as well as in glucose biosensors prepared with PNR. Glucose oxidase enzyme was immobilised by encapsulation in silica sol-gel and compared with that obtained by cross-linking with glutaraldehyde. The biosensors were evaluated by chronoamperometry in 0.1 M phosphate buffer saline solution, pH 7.0, and showed evidence of electron transfer between the enzyme cofactor flavin adenine dinucleotide and PNR dissolved in the enzyme layer competing with PNR-mediated electrochemical degradation of H2O2 formed during the enzymatic process. This paper is dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

20.
Glucose oxidase modified by the covalent attachment of ferrocenecarboxylic acid or ferrocene-acetic acid groups undergoes direct oxidation at metal electrodes. Studies of the comparative stability of the two modified enzymes on storage and on electrochemical cycling show that the material modified with ferroceneacetic acid is the more stable. Amperometric studies of enzyme electrodes based on these modified forms of glucose oxidase show that their application in practical biosensors is severely limited by the poor stability of the oxidized form of the covalently attached ferrocene mediator. A comparison of the results obtained with the native enzyme and with that modified with ferroceneacetic acid, for the oxidation of glucose, d-mannose, 2-deoxy-d-glucose, d-xylose and d-galactose, suggests that the modification procedure has little effect on the selectivity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号