首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reed JL 《Inorganic chemistry》2008,47(13):5591-5600
The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.  相似文献   

2.
Recently the authors have proposed a list-processing approach to the modeling of algebraic quantum field theory methods in quantum mechanics in which the noncommutative algebra of quantum-mechanical operators is emulated by lists. The processing produces reordered sequences of elements of a ring with a unit commutator and generates dynamic structures which, for some initial arrangements, correspond to partially ordered graphs characterized by recurrence relations and combinatorial identities. Likewise, in another list-processing application to physical problems, a simulation of Feynman diagrams hinged on predominantly combinatorial aspects and demanded explicit generation of certain combinatorial objects. This motivated an investigation into the combinatorial nature of noncommutative list-processing and of recursive algorithms for explicit construction of combinatorial lists, which we now present. The emphasis is also placed on the consideration of associated graphs and the graph-theoretic origin of the appearance of recurrence relations in the reordering theorems of the noncommutative algebra.  相似文献   

3.
The so-called parametric dependency of the electronic wave function in the Born–Oppenheimer approximation is discussed. Considering a function beyond this approximation, a new set of equations is derived with parametric and nonparametric dependency. Nuclear and electron reduced density matrices are introduced in this derivation. They are used in a formulation of the problem of separation of nuclear and electronic motion.  相似文献   

4.
Molecular dynamics simulations in conjunction with MEAM potential models have been used to study the melting and freezing behavior and structural properties of both supported and unsupported Au nanoclusters within a size range of 2 to 5 nm. In contrast to results from previous simulations regarding the melting of free Au nanoclusters, we observed a structural transformation from the initial FCC configuration to an icosahedral structure at elevated temperatures followed by a transition to a quasimolten state in the vicinity of the melting point. During the freezing of Au liquid clusters, the quasimolten state reappeared in the vicinity of the freezing point, playing the role of a transitional region between the liquid and solid phases. In essence, the melting and freezing processes involved the same structural changes which may suggest that the formation of icosahedral structures at high temperatures is intrinsic to the thermodynamics of the clusters, rather than reflecting a kinetic phenomenon. When Au nanoclusters were deposited on a silica surface, they transformed into icosahedral structures at high temperatures, slightly deformed due to stress arising from the Au-silica interface. Unlike free Au nanoclusters, an icosahedral solid-liquid coexistence state was found in the vicinity of the melting point, where the cluster consisted of coexisting solid and liquid fractions but retained an icosahedral shape at all times. These results demonstrated that the structural stability in the structures of small Au nanoclusters can be enhanced through interaction with the substrate. Supported Au nanoclusters demonstrated a structural transformation from decahedral to icosahedral motifs during Au island growth, in contrast to the predictions of the minimum-energy growth sequence: icosahedral structures appear first at very small cluster sizes, followed by decahedral structures, and finally FCC structures recovered at very large cluster sizes. The simulations also showed that island shapes are strongly influenced by the substrate, more specifically, the structural characteristic of a Au island is not only a function of size, but also depends on the contact area with the surface, which is controlled by the wetting of the cluster to the substrate.  相似文献   

5.
Tricalix[4]arene 4, tricalix[5]arene 14, and pentacalix[4]arene 10 have been synthesized from O-alkylcalixarene mono- and dialdehydes by a two-step conversion to the corresponding monoethynyl ketones or diethynyl ketones followed by aryne trimerization in refluxing DMF containing a dialkylamine. The tricalixarenes 4 and 14 were converted, in turn, to calixarenes 6 and 16, which carry OH groups on the lower rim and methylenes as the bridging moieties to the benzene ring. Complexation studies with the tricalix[5]arene 16 show that it forms (a) a 1:3 complex with N,N-dimethylethylenediamine in which each calixarene unit contains a molecule of the amine, (b) a 1:1 complex with tris(aminomethyl)amine in which each calixarene unit contains one of the three arms of the guest, and (c) a 1:1 complex with C60 in which the guest presumably resides in the cavity provided by the three calixarene units acting cooperatively.  相似文献   

6.
The donor–acceptor interaction of acrylonitrile (AN) with indene (In) has been investigated by means of ultraviolet spectroscopy and dielectric polarization measurements. The latter method yielded a value of 0.5 for the association constant of the charge-transfer-complex (CTC) and a 4.02 D for its dipole moment. The copolymerization of the two monomers was characterized by a tendency towards alternation when conducted in the bulk. This might be due to the participation of a weak CTC in the process of copolymerization. However, this tendency disappeared in polar solvents such as DMF.  相似文献   

7.
8.
The marine-derived halipeptins A (1a) and D (1d) and their analogues 3a, 3d and 4a, 4d were synthesized starting from building blocks 10, 13, 14a or 14d, 15, and 16. The first strategy for assembling the building blocks, involving a macrolactamization reaction to form the 16-membered ring hydroxy thioamide 52d as a precursor, furnished the epi-isoleucine analogue (4d) of halipeptin D, whereas a second approach involving thiazoline formation prior to macrolactamization led to a mixture of halipeptins A (1a) and D (1d) and their analogues 3a, 3d (epimers at the indicated site) and 4a, 4d (epimers at the indicated site). The same route starting with D-Ala resulted in the exclusive formation of the epimeric halipeptin D analogue 3d. The synthesized halipeptins, together with the previously constructed oxazoline analogues 5d and 6d, were subjected to biological evaluation revealing anti-inflammatory properties for 1a, 1d, and 6d while being noncytotoxic against human colon cancer cells (HCT-116).  相似文献   

9.
We start by pointing out relationships between production of information, global simulation, and supercomputing, thus placing our research activities in today's society context. Then we detail the evolution in hardware and software for 1CAP, our experimental supercomputer, which we claim to be especially well suited for supercomputing in science and engineering. A preliminary discussion of 1CAP/3090 (our latest experimental effort) is included. Many examples from different disciplines are provided to verify our assertions. We “prove” our point by presenting an example of global supercomputing. Starting with 3 nuclei and 10 electrons, building up to a single water molecule, then to a few hundred, we learn, for example, about Raman, infrared, and neutron scattering; we then move up to a few hundred thousand molecules to analyze particle flow and obstructions; finally we experiment, but only preliminarily, with a few million particles to learn more on nonequilibrium dynamics as in the Rayleigh-Benard systems. In this way, quantum mechanics is overlapped with statistical mechanics and expanded into microdynamics. The entire paper is finally reanalyzed from a different perspective, presenting rather systematically, even if most briefly, our ideas on “modern” computational chemistry, where quantum mechanics is as much needed as fluid dynamics and graphics. In this section the main computational techniques are analyzed in terms of computer programs and their associated flow diagrams to solve the basic equations using parallel supercomputers.  相似文献   

10.
By analysis of infrared and NMR spectra, N-ethylacetamide, in the liquid state, in polar and nonpolar media, in a broad temperature and concentration range, was found to exist in the form of a single pair of equivalent mirror image conformers, with the conformational angle φ in the vicinity of ± 75 °. Similarly N-isopropylacetamide exists as a single conformer or conformer pair, the possible structures of which are discussed.  相似文献   

11.
Proteomics is a research field aiming to characterize molecular and cellular dynamics in protein expression and function on a global level. The introduction of proteomics has been greatly broadening our view and accelerating our path in various medical researches. The most significant advantage of proteomics is its ability to examine a whole proteome or sub-proteome in a single experiment so that the protein alterations corresponding to a pathological or biochemical condition at a given time c…  相似文献   

12.
A microchip-based cell culture system was developed and a primary culture of rat hepatocytes was realized in the system. The microchip was made of glass plates and had a microchannel and a microculture flask inside. The flask inner surface was coated using collagen solution; then FBS and DMEM were added successively. Rat hepatocytes suspended in a medium was introduced into the microchip and incubated at 37 degrees C in a humidified atmosphere with 5% CO(2). Because of the shortage of dissolved oxygen, the cultured cells in the microchip resulted in a significant decrease in viability. To overcome this, a continuous medium flow oxygen and nutrition supplying system was designed and constructed. The system realized good cell growth for at least 4 days. Liver-specific functions, such as the synthesis of albumin and urea from hepatocytes were confirmed.  相似文献   

13.
Design and Synthesis of Cyclodextrin-Based Rotaxanes and Polyrotaxanes   总被引:1,自引:0,他引:1  
Rotaxanes are compounds in which a ring is threaded by a chain having bulky terminal cap groups. In this article, we review the design, synthesis and characterization of rotaxanes and polyrotaxanes of cyclodextrins threaded by an alkyl chain or a poly(ethylene glycol) as well as the synthesis of a light-driven molecular shuttle based on a cyclodextrin-rotaxane.  相似文献   

14.
The magnetic and electronic properties of both linear and dimerized nanochains of titanium at different atomic distances are calculated within density functional theory with the generalized gradient approximation. Titanium which is a nonmagnetic in its bulk form is shown to become magnetic in its nanochain structure. Also, a close relationship is found between magnetic state and geometry of chain structure and the dependence of electronic properties on the atomic structures of chains is revealed. It is found that, for dimerized nanochains from equilibrium constant, compressive strain leads to a reduction in magnetism. Moreover, characteristics of the systems near the Fermi level are investigated and the charge densities of both nanostructures are studied in the ferromagnetic order. The results show that metallic bonding is mainly responsible for the linear structure; however, for the dimerized structure, the bonding is more directional, i.e. has a more covalent character. With increasing tension along the axis of the nanostructures, a change in the types of bonding is found.  相似文献   

15.
Attaching 2-thienyl residues to the Pechmann dye core chromophore (5,5-exo-dilactone situated around a C-C double bond) results in a novel magenta-coloured compound (UV/Vis spectroscopy λ(max) =570 nm in CHCl(3)), which can be rearranged to a yellow 6,6-endo-dilactone (λ(max) =462 nm in CHCl(3)). Single and double amidation results in pronounced redshift in the 5,5-exo series (violet, λ(max) =570 nm and blue, λ(max) =606 nm in CHCl(3), respectively) but pronounced blueshift in the 6,6-endo series (yellow, λ(max) =424 nm and pale yellow bordering on colourless, λ(max) =395 nm in CHCl(3), respectively). Incorporation of a 3-alkyl substituent on the thiophene ring allows for sharp increase of solubility in organic solvents concomitant with fine-tuning of the colour: a redshift in 5,5-exo-dilactones but a blueshift in 5,5-exo-dilactams. DFT computations demonstrate that both lactone classes are planar regardless of the presence of a 3-alkyl group. The lactam derivatives are non-planar: the thiophene-core chromophore dihedral angles increase on going from 5,5-exo to 6,6-endo and from thiophene to 3-alkyl thiophene. Depending on the core heteroatom (O vs. N-alkyl), ring junction (5,5-exo vs. 6,6-endo) and 3-thiophene substituent (H vs. alkyl), two, three, four or six conformers are possible. All of these conformers were characterised by DFT and were found to be very close in energy at both IEFPCM/B3LYP/DGDZVP and SMD/M06/DGDZVP levels of theory. Within each conformer set, the HOMO and LUMO energies were within 0.05 eV and the predicted λ(max) values (TD-DFT) within 10 nm, and this implies low sensitivity of the optical and electronic properties to conformation. Cyclic voltammetry measurements of selected compounds demonstrated good matching to the HOMO and LUMO energies from IEFPCM/B3LYP/DGDZVP computations. M06-2X was the best DFT functional for TD-DFT, giving predicted λ(max) values within about 20 nm.  相似文献   

16.
We have designed and synthesized four compounds integrating luminescent and photochromic components in their molecular skeletons. Two of them combine a nitrospiropyran photochrome with either one or two naphthalene fluorophores and can be prepared in three synthetic steps. The other two consist of a nitrospiropyran photochrome and a benzophenone phosphore connected by either ether or ester linkages and can be prepared in six or five, respectively, synthetic steps. The luminescent components of these assemblies are expected to transfer energy intramolecularly to the photochromic species upon excitation and encourage their photoisomerization. Consistently, the phosphorescence of the benzophenone units and the fluorescence of the naphthalene components are effectively quenched when these species are connected covalently to a nitrospiropyran. Nonetheless, the photoisomerization of the photochrome becomes significantly less efficient after the covalent attachment to the luminescent partner. The fraction of incident radiations absorbed by either the benzophenone or the naphthalene fragment does not promote the isomerization of the photochromic appendage. Instead, irreversible transformations occur upon irradiation of the luminophore-photochrome assemblies. Thus, the covalent attachment of a benzophenone or a naphthalene to a nitrospiropyran is not a viable strategy to improve the photocoloration efficiency of the photochromic component. Even although the very same luminophores are known to sensitize intermolecularly the isomerization of nitrospiropyrans, the transition to covalent luminophore-photochrome assemblies tends to promote degradation, rather than sensitization, upon irradiation.  相似文献   

17.
Combining the core structure of neopeltolide, lactone 16 a, with the oxazole-containing side chain 23 via a Mitsunobu reaction provided the cytotoxic natural product neopeltolide (2). The side chain 23 was prepared from oxazolone 24 via the corresponding triflate. Key steps in the preparation of 23 were a Sonogashira coupling, an enamine alkylation, and a Still-Gennari Horner-Emmons reaction. By changing the Leighton reagent in the allylation step, the 11-epimer of lactone 16 a, compound 50 was prepared. This led to 11-epi-neopeltolide 51. The 5-epimer of neopeltolide, compound 52, could be obtained from the minor isomer of the Prins cyclization. Furthermore, a range of analogues with modifications in the side chain were prepared. All derivatives were checked for toxicity effects on mammalian cell cultures and inhibitory effects on NADH oxidation in submitochondrial particles of bovine heart. Modifications in the lactone part are tolerated to some degree. On the other hand, shortening the distance between the oxazole and the lactone causes a significant drop in activity. Analogue 65 with an additional double bond is equally or even more active than neopeltolide itself.  相似文献   

18.
Linear-sweep and stripping a.c. and pulse voltammetric methods have been compared for a variety of electrodes and electrode processes. Each of the linear-sweep techniques is readily used systematically because, in contrast to d.c. linear-sweep voltammetry, the theory for reversible electrode processes is basically analogous to that for polarography at a dropping mercury electrode. In stripping analysis, some departures are found at a hanging mercury drop electrode because of spherical diffusion effects. For reversible electrode processes, the limits of detection for a.c. and pulse methods are comparable. However, a.c. methods offer advantages over pulse methods in discriminating against irreversible electrode processes and permit the ready use of faster scan rates. Pulse methods are more sensitive for irreversible electrode process. Normal pulse polarography is particularly favourable in minimizing undesirable phenomena arising from adsorption or deposition of material on electrodes.  相似文献   

19.
The present status of both process gas (PGC) and liquid (PLC) chromatographs is examined with regard to the main criteria that any process analyser should fulfil: reliability, credibility, fast response and low maintenance. Despite considerable improvements in the construction of these instruments, owing to the materials used, progress in technology and microelectronics and the advent of microprocessors, their reliability is still a matter of great concern.The deferred standard concept may offer a solution for these problems. Progress is also made by the introduction of fused-silica capillary columns in PGC, which allow a better resolution and a greater speed of analysis. However, this technology requires a redesign of PGCs.Further, particularly for PLC, a new approach based on the concept of instability instead of stability of the main parameters is proposed. This approach leads to a simpler, more reliable and less expensive PLC. The consequence is some radical changes in the design and functions of both the analytical and control units of the chromatograph. The analytical unit is plugged into the chemical reactor and is not temperature controlled. The control unit, incorporating a microcomputer and dedicated software, is able to characterize the peaks despite their fluctuating retention times, to readjust the time functions of the analytical sequence and to validate the detector response in the case of fluctuations of temperature or mobile phase flow-rate. This approach is useful for the implementation of temperature programming and, according to the validation function of the deferred standard, to allow the use of selective but unstable detectors in PGC.Simpler in hardware, PGCs and PLCs could become “intelligent apparatus” capable of new qualitative and quantitative tasks at a more competitive cost.  相似文献   

20.
In this review we introduce recent advances in the development of cellulose nanomaterials and the construction of high order structures by applying some principles of colloid and interface science. These efforts take advantage of natural assemblies in the form of fibers that nature constructs by a biogenetic bottom-up process that results in hierarchical systems encompassing a wide range of characteristic sizes. Following the reverse process, a top-down deconstruction, cellulose materials can be cleaved from fiber cell walls. The resulting nanocelluloses, mainly cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of fibers), have been the subject of recent interest. This originates from the appealing intrinsic properties of nanocelluloses: nanoscale dimensions, high surface area, morphology, low density, chirality and thermo-mechanical performance. Directing their assembly into multiphase structures is a quest that can yield useful outcomes in many revolutionary applications. As such, we discuss the use of non-specific forces to create thin films of nanocellulose at the air–solid interface for applications in nano-coatings, sensors, etc. Assemblies at the liquid–liquid and air–liquid interfaces will be highlighted as means to produce Pickering emulsions, foams and aerogels. Finally, the prospects of a wide range of hybrid materials and other systems that can be manufactured via self and directed assembly will be introduced in light of the unique properties of nanocelluloses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号