首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phenylalaninol enantiomers are one of the most important chiral compounds due to its presence in biologically active molecules and pharmaceutical products. In this paper, a novel chiral fluorescence polymer sensor incorporating (S)‐BINOL and oligomeric aniline via a nucleophilic addition–elimination reaction is designed and synthesized. Polymer sensor exhibits “turn‐off” fluorescence quenching response upon the addition of Hg2+, and “turn‐on” moderate fluorescence enhancement behavior towards phenylalaninol enantiomers. Meanwhile, this kind of (S)‐BINOL‐based polymer sensor can exhibit highly selective enantioselective recognition response towards (L)‐phenylalaninol upon the addition of Hg2+ and the value of ef can reach as high as 5.4, which can be attributed to the formation of in situ generated radical cation arisen from oligomeric aniline moiety by Hg2+ induction.

  相似文献   


2.
Heavy metal ion pollution has become a serious environmental problem. Herein, this study reports the synthesis of poly(ionic liquid) (PIL) membranes via in situ photo‐crosslinking of vinyl imidazole with both hydrophilic and hydrophobic ionic liquid monomers. The resultant amphiphilic polymer membranes are porous and exhibit high absorption capacity of metal ions (including Hg2+, Pb2+, Cu2+, Cd2+, and Zn2+) in both high (1000 mg L−1) and low (10 mg L−1) concentration metal ion solutions. These metal ionic absorption membranes are easily regenerated in acid solution and can be reused without significant decreases of absorption capacity after many cycles. These PIL membranes may have potential applications as eco‐friendly and safe heavy metal ion removal materials.

  相似文献   


3.
The synthesis of an ambipolar π‐conjugated copolymer consisting of alternating diketopyrrolopyrrole and tetrafluorobenzene via direct arylation polymerization (DAP) is reported. Two different combinations of monomers are investigated under various catalytic conditions for DAP. The target polymer obtained under an optimized catalytic condition shows minimal structural defects, a number‐average molecular weight of 33.2 kDa, and balanced electron and hole mobility of 1 × 10−2 cm2 V−1 S−1 in the organic field‐effect transistors fabricated and tested under ambient conditions.

  相似文献   


4.
A series of fluorene‐based conjugated polymers containing the aggregation‐induced emissive (AIE)‐active tetraphenylethene and dicarboxylate pseudocrown as a receptor exhibits a unique dual‐mode sensing ability for selective detection of lead ion in water. Fluorescence turn‐off and turn‐on detections are realized in 80%–90% and 20% water in tetrahydrofuran (THF), respectively, for lead ion with a concentration as low as 10−8 m .

  相似文献   


5.
The first polymer bearing exTTF units intended for the use in electrical charge storage is presented. The polymer undergoes a redox reaction involving two electrons at −0.20 V vs Fc/Fc+ and is applied as active cathode material in a Li‐organic battery. The received coin cells feature a theoretical capacity of 132 mAh g−1, a cell potential of 3.5 V, and a lifetime exceeding more than 250 cycles.

  相似文献   


6.
The ruthenium benzimidazolylidene‐based N‐heterocyclic carbene (NHC) complex 4 catalyzes the direct dehydrogenative condensation of primary alcohols into esters and primary alcohols in the presence of amines to the corresponding amides in high yields. This efficient new catalytic system shows a high selectivity towards the conversion of diols to polyesters and of a mixture of diols and diamines to polyamides. The only side product formed in this reaction is molecular hydrogen. Remarkable is the conversion of hydroxytelechelic polytetrahydrofuran ( = 1000 g mol−1)—a polydispers starting material—into a hydrolytically degradable polyether with ester linkages ( = 32 600 g mol−1) and, in the presence of aliphatic diamines, into a polyether with amide linkages in the back bone ( = 16 000 g mol−1).

  相似文献   


7.
A novel strategy for the incorporation of carbon dioxide into polymers is introduced. For this purpose, the Ugi five‐component condensation (Ugi‐5CC) of an alcohol, CO2, an amine, an aldehyde, and an isocyanide is used to obtain step‐growth monomers. Polymerization via thiol‐ene reaction or polycondensation with diphenyl carbonate gives diversely substituted polyurethanes or alternating polyurethane‐polycarbonates, respectively. Furthermore, the application of 1,12‐diaminododecane and 1,6‐diisocyanohexane as bifunctional components in the Ugi‐5CC directly results in the corresponding polyamide bearing methyl carbamate side chains ( = 19 850 g mol−1). The latter polymer is further converted into the corresponding polyhydantoin in a highly straightforward fashion.

  相似文献   


8.
Polyfluorene‐bearing bromohexyl side chains are quaternized by 1‐vinylimidazole in order to attach dialkylimidazolium bromide ionic liquid (IL) species along the conjugated backbone. Subsequently, polyfluorene polyelectrolyte nanoparticles (NPs) of 40 nm in average size are created via radical cross‐linking of the pendant vinylimidazolium groups. Anion exchange from Br to BF4, PF6, and bis(trifluoromethylsulfonyl)imide anion (TFSI) renders NPs adjustable dispersability in various organic solvents. The hydrophobic‐conjugated backbone and the hydrophilic dialkylimidazolium bromide IL moieties depict an amphiphilic profile, which allows the NPs to be deployed as conductive stabilizer in the emulsion polymerization of styrene. The resultant latexes are fluorescent, tunable in size and can be transferred to organic solvents without forfeiting their colloidal stability.

  相似文献   


9.
A simplistic convenient “arm‐first” catalytic synthesis method is demonstrated to render soft unimolecular star polyethylene nanoparticles. Low‐dispersity polyethylene arms of controllable length and topology are first synthesized via Pd‐catalyzed “living” ethylene poly­merization. The subsequent addition of norbornadiene as a unique cross‐linker renders the block polymer containing a short polynorbornadiene (PNBD) sequence. Efficient and rapid catalytic cross‐linking of the PNBD sequences occurs in the polymer precipitation and drying steps to give rise to star polyethylene nanoparticles. The star polymers are featured with tunable arm length and topology, high molecular weight (as high as 1770 kg mol−1), high arm numbers (as high as 88), and desirable average nano­particle size (29−72 nm).

  相似文献   


10.
The performance of polymer field‐effect transistors (PFETs) based on short rigid rod semiconducting poly(2,5‐didodecyloxy‐p‐phenyleneethynylene) (D‐OPPE) is highlighted. The controlled heating and cooling of thin films of D‐OPPE allows for a recrystallization from the melt, boosting the performance of D‐OPPE‐based transistors. The improved film properties induced by controlled annealing lead to a hole field‐effect mobility around 0.014 cm2 V−1 s−1, an on/off ratio of 106, a sub‐threshold swing of 3 V dec−1 and a threshold voltage of −35 V, employing a poly(methyl methacrylate) (PMMA) gate dielectric. Thus, PFETs out of D‐OPPE compete now with spin‐coated, polycrystalline poly(3‐hexylthiophene)‐based PFETs.

  相似文献   


11.
A novel water‐soluble fluorescent glycodendrimer based on perylene bisimides is synthesized, which exhibits high fluorescence quantum yield of 54%. While the binding interactions of PBI‐Man with Concanavalin A (Con A) are studied by fluorescence spectra and CD spectra, which show strong binding affinity for Con A with the binding constant of 3.8 × 107m −1 for monomeric mannose, nearly four orders of magnitude higher affinity than the monovalent mannose ligand. Furthermore, the fluorescence imaging of macrophage cell with PBI‐Man is investigated, and shows selectively binding interaction with the mannose receptor‐medicated cell entry. Moreover, the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) activities of PBI‐Man show that PBI‐Man as a biocompatible agent is noncytotoxic to living cells.

  相似文献   


12.
We report the first mass spectrometric analysis of poly(ionic liquid)s (PILs) containing weakly coordinating anions introduced by a fast, simple, and quantitative postmodification method on the example of the hydrophilic, well‐defined poly(vinylbenzylpyridinium chloride) p([VBPy]Cl) species, analyzed with an in‐source collision induced dissociation‐Orbitrap mass spectrometry (MS) protocol. Using the MS approach allows for the precise structural elucidation of ion‐exchanged p([VBPy]Cl) utilizing AgX (X = NO3, CF3CO2, BF4) salts. The anion exchange is shown to be quantitative – without observing residual chlorinated PIL – on rapid time scales, using only filtration as a standard procedure during sample preparation. In addition, the influence of weakly coordinating anions on the ionization behavior of PILs is studied in detail.

  相似文献   


13.
A novel route for the synthesis of poly(ethylene glycol)‐b‐polystyrene copolymer, starting from commercially available poly(ethylene glycol) methyl ether and azido terminated polystyrene prepared by atom transfer radical polymerization and subsequent nucleophilic substitution, is applied with simplicity and high efficiency. The combination of photoinduced copper (I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) and ketene chemistry reactions proceeds either simultaneously or sequentially in a one‐pot procedure under near‐visible light irradiation. In both cases, excellent block copolymer formations are achieved, with an average molecular weight of around 7000 g mo1−1 and a polydispersity index of 1.20.

  相似文献   


14.
In this article, a synthetic concept for the preparation of polyamides with functional side groups is described. First, the synthesis of a bis(thiolactone) monomer is shown in a concise three‐step route from itaconic acid and DL‐homocysteine thiolactone. The reactivity of the resulting bis(thiolactone) toward hexyl amine is examined. Next, the bis(thiolactone) is reacted as A,A‐type monomer with different B,B‐type comonomers (1,12‐diaminododecane and 1,3‐bis(aminopropyl)tetramethyldisiloxane). Ring opening of the thiolactones by the diamines leads to polyamides with pendant thiol groups. Using two diamines in different ratios, the properties of the resulting polyamides are tuned (thermal properties are determined) and different molecular weights are acquired. Subsequently, the thiol groups are reacted with methyl acrylate via Michael addition to functionalize the polyamides. Functionalization of thiol‐functional polyamides using poly(ethylene glycol) monomethyl ether (mPEG) acrylates ( = 480 and 1700 g mol−1) results in water‐soluble amphiphilic poly­amides with molecular weights higher than 10 000 g mol−1.

  相似文献   


15.
Four novel conjugated polymers ( P1‐4 ) with 9,10‐disubstituted phenanthrene (PhA) as the donor unit and 5,6‐bis(octyloxy)benzothiadiazole as the acceptor unit are synthesized and characterized. These polymers are of medium bandgaps (2.0 eV), low‐lying HOMO energy levels (below −5.3 eV), and high hole mobilities (in the range of 3.6 × 10−3 to 0.02 cm2 V−1 s−1). Bulk heterojunction (BHJ) polymer solar cells (PSCs) with P1‐4 :PC71BM blends as the active layer and an alcohol‐soluble fullerene derivative (FN‐C60) as the interfacial layer between the active layer and cathode give the best power conversion efficiency (PCE) of 4.24%, indicating that 9,10‐disubstituted PhA are potential donor materials for high‐efficiency BHJ PSCs.

  相似文献   


16.
The glucose oxidase and glucose mediated formation of amphipilic copolymers of N‐(ferrocenoylmethyl)acrylamide (NFMA) and N,N‐diethylacrylamide (DEA) in aqueous cyclodextrin solution is presented. Thereby, NFMA is not only a comonomer but also part of the redox initiation system. The obtained copolymers contain NFMA units between 1 and 10 mol%. The molecular masses of the copolymers are dependent on the ferrocene content, whereupon molecular weights between 38 000 and 71 000 g mol−1 are achieved.

  相似文献   


17.
Sodium alginate (SA), acting as a trypsin inhibitor by means of electrostatic interaction, is studied. The half‐maximal inhibitory concentration (IC50 = 0.05 μg mL−1) of this natural anionic polymer is about 400 times lower than that of commercial soybean trypsin inhibitor (STI). Unlike the Ca2+‐deprivation mechanisms, its inhibition may be attributed to preventing the trypsin active site (TAS) from accessing the macromolecular substrates instead of denaturing it. SA is an efficient, innocuous, and cost‐effective inhibitory excipient that can be conveniently used in many peptide and protein dosage formulations.

  相似文献   


18.
High‐molecular‐weight conjugated polymer HD‐PDFC‐DTBT with N‐(2‐hexyldecyl)‐3,6‐difluorocarbazole as the donor unit, 5,6‐bis(octyloxy)benzothiadiazole as the acceptor unit, and thiophene as the spacer is synthesized by Suzuki polycondensation. HD‐PDFC‐DTBT shows a large bandgap of 1.96 eV and a high hole mobility of 0.16 cm2 V−1 s−1. HD‐PDFC‐DTBT:PC71BM‐based inverted polymer solar cells (PSCs) give a power conversion efficiency (PCE) of 7.39% with a Voc of 0.93 V, a Jsc of 14.11 mA cm−2, and an FF of 0.56.

  相似文献   


19.
High‐dielectric constant materials are critical for numerous applications such as photovoltaics, photonics, transistors, and capacitors. There are numerous polymers used as dielectric layers in these applications but can suffer from having a low dielectric constant, small band gap, or ferroelectricity. Here, the structure–property relationship of various poly(dimethyltin esters) is described that look to enhance the dipolar and atomic polarization component of the dielectric constant. These polymers are also modeled using first principles calculations based on density functional theory (DFT) to predict such values as the total, electronic, and ionic dielectric constant as well as structure. A strong correlation is achieved between the theoretical and experimental values with the polymers exhibiting dielectric constants >4.5 with dissipation on the order of 10−3–10−2.

  相似文献   


20.
Rapid, large‐scale exfoliation of graphene in water has expanded its potential for use outside niche applications. This work focuses on utilizing aqueous graphene dispersions to form thin films using layer‐by‐layer processing, which is an effective method to produce large‐area coatings from water‐based solutions of polyelectrolytes. When layered with polyethyleneimine, graphene flakes stabilized with cholate are shown to be capable of producing films thinner than 100 nm. High surface coverage of graphene flakes results in electrical conductivity up to 5500 S m−1. With the relative ease of processing, the safe, cost effective nature of the ingredients, and the scalability of the deposition method, this system should be industrially attractive for producing thin conductive films for a variety of electronic and antistatic applications.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号