首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study is to find optimum preparation conditions in converting teak wood waste into activated carbon (TWAC) and to evaluate its performance in adsorbing cationic dye of methylene blue (MB). TWAC was produced via physiochemical activation (potassium hydroxide, KOH chemical treatment, and carbon dioxide, CO2 gasification) and heated through microwave irradiation technique. With the aid of response surface methodology (RSM), optimized TWAC was successfully synthesized at radiation power, radiation time, and impregnation ratio (IR) of 366 W, 5.30 min, and 1.15 g/g, respectively. These preparation conditions produced TWAC with MB adsorption uptakes of 66.69 mg/g and a yield of 38.23%. Characteristics of TWAC in terms of BET surface area, mesopores surface area, total pore volume, and average pore diameter were determined to be 1345.25 m2/g, 878.63 m2/g, 0.6140 cm3/g, and 2.85 nm, respectively. Isotherm studies divulged that the MB-TWAC adsorption system followed the Langmuir model with a maximum monolayer adsorption capacity of 567.52 mg/g. In terms of kinetic studies, this adsorption system fit pseudo-second order model the best whereas Boyd plot confirmed that the adsorption process was controlled by the film diffusion mechanism. Thermodynamic parameters of enthalpy change, ΔH°, entropy change, ΔS°, Gibbs free energy, ΔG° and Arrhenius activation energy, Ea were calculated to be ?4.06 kJ/mol, 0.06 kJ/mol.K, –22.69 kJ/mol and 16.03 kJ/mol, respectively. The activation and microwave heating methods employed succeeded to produce TWAC with excellent adsorption performance in removing MB dye. TWAC was also successfully regenerated for 5 cycles via microwave heating technique.  相似文献   

2.
The overall activation energy of the thermal degradation of polyisobutylene has been measured using factor-jump thermogravimetry to be 206±1 kJ/mole over the range 365 to 405° in N2 at 800 mm Hg pressure and flowing at 4 mm/s over the sample. This is consistent with some values reported for thermal degradation in vacuum and in solution. In 5 mm Hg of N2, an apparent activation energy of 218±2 kJ/mole was found, and in vacuum the apparent activation energy is 238±13 kJ/mole. Troublesome bubbling made the vacuum values difficult to measure. Substitution of reasonable values for the activation energies of initiation,E i , termination,E t , and the activation energy,E a , for vacuum degradation in the equationE a =E i /2E d -E t /2 yields an activation energy Ed=84 kJ/mole for the unzipping reaction. This equation presupposes a degradation mechanism of random initiation, unzipping, and bimolecular termination. Substitution of reasonable values for the heat of polymerization, ΔH, in the definition ΔH=E p ?e d suggests that the activation energy of the polymerization reaction at 375° is approximately 30 kJ/mole.  相似文献   

3.
In this article, novel Ag–ZnO/g-C3N4/GO ternary nanocomposites were prepared via co-precipitation method by 1%w Ag, 50% w g-C3N4, 10% w GO concentration and applied in dynamic membranes. The characteristics of Ag–ZnO/g-C3N4/GO nanocomposite were evaluated by various techniques such as X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray map, transmission electron microscopy, X-ray photoelectron spectroscopy, photocatalyst. The photocatalytic degradation of methylene blue was investigated under visible light. The photocatalytic efficiency of 93.43% for methylene blue degradation was obtained for Ag–ZnO/g-C3N4/GO nanocomposite after 50 min of irradiation, which was remarkably higher than that of pure ZnO, bare g-C3N4, Ag–ZnO, and Ag–ZnO/g-C3N4 at the same irradiation time. Likewise, in self-forming and pre-coated membranes, ternary nanocomposites can play a vital role in the membrane surface properties, as well as their decolorization performance. The rejection of methylene blue was 30% in pure polyethersulfone membrane, while the photocatalytic degradation of methylene blue in Ag–ZnO/g-C3N4/GO nanocomposites was 88.46% and 98.86% after 10 and 15 min of irradiation in both self-forming and pre-coated dynamic membranes, respectively. Experimental results show that the dynamic membrane possesses a higher ability for degradation of MB in a shorter period of time than the static system.  相似文献   

4.
Bio-composites of ethylene-co-vinyl acetate (EVA) with chitosan (CS) and chitosan-g-PANi (CS-PANi) have been developed by using a melt-mixing process by varying the composition of fillers. Investigations on the degradation mechanism of thermoplastics lead to insights of their performance at high temperatures. The decomposition kinetics of the bio-composites was determined by plotting thermograms at different heating rates. The model-free Flynn-Wall-Ozawa and Kissinger method has been used to estimate the energy of activation (Ea) of the developed composites. The activation energies of EVA/CS composites lie between 162 and 209 kJ/mol and EVA/chitosan-g-PANi composites within the range of 145–256 kJ/mol. The variation in activation energy across the extent of conversion levels denotes multistep kinetics of degradation. The calculated Ea has been found to be in good agreement with the literature reports.  相似文献   

5.
In attempt to expand the use of natural compounds for waste treatment, a novel catalyst with the utility for dye reductive degradation is reported. In the catalyst synthesis procedure, the plant Echinops bannaticus was applied as a biosource and hydrothermally treated to furnish a hydrochar that served as a support. The latter was magnetized, vinyl functionalized, and then polymerized with copolymer of 2-hydroxyethyl methacrylate and methacrylate polyhedral oligomeric silsesquioxane. Subsequently, Ag nanoparticles were stabilized on the resultant composite with the aid of Zinnia grandiflora extract as a natural reducing agent. The resulting catalyst displayed high catalytic activity for the reduction of methylene orange and rhodamine B dyes in aqueous media at room temperature. The effects of the reaction variables, including the reaction time and temperature, and the catalyst loading, were examined and the kinetic and thermodynamic terms for both reactions were evaluated. Ea, ΔH#, and ΔS# values for the reduction of methyl orange were estimated as 50.0 kJ/mol, 51.50 kJ/mol, and −102.42 J mol−1 K−1, respectively. These values for rhodamine B were measured as 28.0 kJ/mol, 25.5 kJ/mol, and −187.56 J mol−1 K−1, respectively. The recyclability test also affirmed that the catalyst was recyclable for several runs with insignificant Ag leaching and decrement of its activity.  相似文献   

6.
The lifetime of polycarbonate (PC) coated with silicone hardcoats containing UV absorber is shorter at elevated temperatures. The activation energy (Ea) for delamination was found to be 18 ± 2 kJ/mol (4.3 ± 0.5 kcal/mol) at the 95% confidence level in this study. This Ea is the consequence of the sensitivity of the substrate and the UV absorber to temperature. The Ea for PC photodegradation was previously found to be 17-21 kJ/mol (4-5 kcal/mol). The Ea for loss of absorbance in the second-generation silicone hardcoat was found to be 28.5 ± 5.4 kJ/mol (6.8 ± 1.3 kcal/mol) at the 95% confidence level. Results are consistent with experimental findings when these activation energies are used in published predictive models. Since the Ea for coating delamination depends on the Ea of UV absorber loss, coating systems different from the one in this study will need to be investigated separately.  相似文献   

7.
The temperature dependences of the EPR spectrum of the 2-trifluoromethylnitrobenzene radical anion in DMF:H2O mixtures, caused by the dynamic modulation of the fluorine isotropic hyperfine interaction by the hindered internal rotation of the CF3 group, have been measured and reconstructed numerically. The activation energy of rotation (E F) and the dynamic mode depended on the water content in the mixture. For mixtures with a molar fraction of water χ = 0, 0.186, 0.315, 0.409, 0.534, 0.650, 0.810, and 0.910, E F = 34.70 kJ/mol, 41.31 kJ/mol, 42.30 kJ/mol, 38.41 kJ/mol, 37.01 kJ/mol, 34.51 kJ/mol, 24.10 kJ/mol, and 21.78 kJ/mol, respectively. For χ = 0.186 in the temperature ranges accessible for measurements, the dynamic exchange is slow; for χ = 0.315, 0.409, 0.534, and 0.650, transitions from slow to intermediate and fast exchange take place; for χ = 0.810 and 0.910 in the temperature ranges under study T ∈ [252, 309]; [254, 297] (K), the exchange is fast. In the range 0.6 < χ < 0.9, E F decreased drastically, and the activation energy of rotational diffusion (E r) of the radical anion became maximum, which corresponds to the range of the compositions of DMF:H2O with maximum deviations from the ideal state.  相似文献   

8.
The solution structure and the aggregation behavior of (E)-2-lithio-1-(2-lithiophenyl)-1-phenylpent-1-ene ( 1 ) and (Z)-2-lithio-1-(2-lithiophenyl)ethene ( 2 ) were investigated by one- and two-dimensional 1H-, 13C-, and 6Li-NMR spectroscopy. In Et2O, both systems form dimers which show homonuclear scalar 6Li,6Li spin-spin coupling. In the case of 2 , extensive 6Li,1H coupling is observed. In tetrahdrofuran and in the presence of 2 mol of N,N,N′,N′-tetramethylethylylenediamine (tmeda), the dimeric structure of 1 coexists with a monomer. The activation parameters for intra-aggregate exchange in the dimers of 1 and 2 ( 1 (Et2O): ΔH≠ = 62.6 ± 13.9 kJ/mol, ΔS≠ = 5.8 ± 14.0 J/mol K, ΔG≠(263) = 61.1 kJ/mol; 2 (dimethoxyethane): ΔH≠ = 36.9 ± 6.5 kJ/mol, ΔS≠ = ?61 ± 25 J/mol K, ΔG≠(263) = 54.0 kJ/mol) and the thermodynamic parameters for the dimer-monomer equilibrium for 1 (ΔH°; = 26.7 ± 5.5 kJ/mol, ΔS° = 63 ± 27 J/mol K), where the monomer is favored at low temperature, were determined by dynamic NMR studies.  相似文献   

9.
Mold fluxes develop important functions during steel continuous casting process. To obtain a free-defect product the melting rate of mold flux is an important property to be controlled. The melting rate depends on the reactivity of carbonaceous material added to these powders as carbon source. In this article, the decomposition kinetic of two carbonaceous materials added to mold flux: petroleum coke and synthetic graphite, was analyzed. By measuring mass loss at different heating rates the decomposition reaction was determined on both types of materials. Applying several kinetic models of non-isothermal decomposition, the average activation energy E = 48 kJ/mol to mold powder with 15 wt% coke and E = 67 kJ/mol to one with 15 wt% graphite was determined. A first order of reaction (n = 1) associated to the decomposition process was assumed to both types of materials. The lower activation energy presented by mold powder-15 wt% petroleum coke indicated a higher reactivity of this material. A higher level of variation of E and n values with decomposition degree and temperature observed in the powder with petroleum coke was associated to a less thermally stable material along with a more complex degradation process.  相似文献   

10.
A new chain transfer agent, ethyl 2-[1-(1-n-butoxyethylperoxy) ethyl] propenoate (EBEPEP) was used in the free radical polymerization of methyl methacrylate (MMA), styrene (St), and butyl acrylate (BA) to produce end-functional polymers by a radical addition–substitution–fragmentation mechanism. The chain transfer constants (Ctr) for EBEPEP in the three monomers polymerization at 60°C were determined from measurements of the degrees of polymerization. The Ctr were determined to be 0.086, 0.91, and 0.63 in MMA, St, and BA, respectively. EBEPEP behaves nearly as an “azeotropic” transfer agent for styrene at 60°C. The activation energy, Eatr, for the chain transfer reaction of EBEPEP with PMMA radicals was determined to be 29.5 kJ/mol. Thermal stability of peroxyketal EBEPEP in the polymerization medium was estimated from the DSC measurements of the activation energy, Eath = 133.5 kJ/mol, and the rate constants, kth, of the thermolysis to various temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The adsorption and dissociation of molecular oxygen on spinel CuCr2O4 (100) surface were carried out by first-principles calculations based on density functional theory (DFT). The calculated results indicate that the Cr site is most favorable for atomic oxygen adsorption, with an adsorption energy of 402.8 kJ/mol. For molecular oxygen adsorption, there are three types of favorable interaction modes: O2 forms bonds with the Cu site or O2 binds to two Cr sites or O2 interacts with both Cu and Cr sites simultaneously. The lowest activation energy (Ea = 35.4 kJ/mol) was found through exploring possible reaction pathways for O2 dissociation. The relationship between Ea and reaction enthalpy (ΔH) for O2 dissociation adsorption reactions fits Brønsted-Evans-Polanyi (BEP) behavior.  相似文献   

12.
Improved full ab initio optimizations of the molecular structure of biphenyl in twisted minimum energy, coplanar, and perpendicular conformations by use of Poles's GAUSSIAN 82 program have been performed in the 6-31G basis set. These lead to geometries and energies of much higher reliability than our earlier STO-3G results. The torsional angle Φmin obtained now is 45.41° in close agreement with the recent experimental value of 44.4° ± 1.2°. Calculated CC distances may be converted to experimental ED rg-values by means of independently determined linear regression correlations with very high statistical confidence, although they agree better with experimental x ray data for coplanar biphenyl without this correction. Calculated intramolecular angles are very similar for both STO-3G and 6-31G basis sets. The calculated torsional energy barrier towards Φ = 90° (ΔE90) is 6.76 kJ/mol in close agreement with the experimental-31G value of 6.5 ± 2.0 kJ/mol. For coplanar biphenyl with D2h-symmetry the calculated torsional energy barrier ΔE0 is 13.26 kJ/mol which is surprisingly much higher than the experimental value of 6.0 ± 2.1 kJ/mol. This discrepancy could not be resolved by optimizations assumed for two kinds of distortions of planarity of orthohydrogens from the molecular plane of the coplanar carbon atoms. But for the twisted minimum energy conformation asymmetric bending of ortho-H atoms lead to a torsional angle Φmin = 44.74° together with a dihedral angle towards ortho-H of 1.22°, and consequently even to an increase of torsional energy barriers to ΔE0 = 13.51 and ΔE90 = 6.91 kJ/mol.  相似文献   

13.
Abstract— The energies of the lowest excited singlet, Es, and triplet, Et, states, and singlet-triplet splitting energies, ΔEs,t, were determined on 18 carcinogenic and 31 noncarcinogenic polycyclic aromatics. A highly significant correlation was found between carcinogenic activity and the energy of the excited singlet state. Compounds with an Es < 312 kJ/mol were 4.8 times more likely to be carcinogens than those compounds with Es 312 kJ/mol (P= 0.015). Compounds whose singlet energies fell within the narrow range of 297 ≤Es≤ 310 kJ/mol were 22.8 times more likely to be carcinogens than those compounds which fell outside this range (P= 0.00006). A significant correlation between carcinogenic activity and Et energies was not found, while the correlation involving ΔEs,t energies was intermediate between the Es and Et correlations. The phosphorescence lifetimes, τp, of the 18 carcinogenic aromatics and 27 of the noncarcinogenic aromatip were determined, and were shown not to be correlated with carcinogenic activity. When either the Et or ΔEs,t energies were plotted as a function of Es it was found that the carcinogens tended to form in an elliptical cluster. Compounds whose Es and Et energies placed them within the ellipse were 9.7 times more likely to be carcinogens than those compounds which fell outside the ellipse (P= 0.002), while with the Es, ΔEs,t ellipse, compounds which fell inside were 20.6 times more likely to be carcinogens than those which fell outside (P= 0.0004). Es, Et, ΔEs,t and τp values were also determined on 12 carcinogenic and 4 noncarcinogenic alkyl substituted benz[a]anthracenes. There was no significant difference between the carcinogens and noncarcinogens and the “elliptical” correlation predicted both the carcinogens and noncarcinogens to be carcinogenic. The results suggest that either some property(ies) of the lowest excited singlet state, but not its energy, or some molecular property(ies) which runs parallel to singlet state energies may be important in determining carcinogenic activity in polycyclic aromatics.  相似文献   

14.
Summary Chromatographic analysis of the degradation ofD-xylose either in plain water or aqueous sulfuric acid at temperatures ranging from 180 – 220°C gave up to 50 mol% of furfural. Activation energies did not differ significantly between reactions in plain water (E a =119.4 kJ/mol), 0.001M H2SO4 (E a =120.6 kJ/mol), 0.01M H2SO4 (E a =130.8 kJ/mol), and 0.1M H2SO4 (E a =120.7 kJ/mol). However, under alkaline conditions the activation energy was only 63.7 kJ/mol, indicating a different reaction mechanism. Isotachophoretic analyses revealed the formation of pyruvic, formic, glycolic, lactic, and acetic acid. While the relative yields of these acids ranged from 0.8 to 7% under hydrothermal and acidic conditions, 10 – 23% were obtained in alkaline degradation.
Quantitative Studien zur Bildung von Furfural und organischen Säuren während des hydrothermalen, sauren und alkalischen Abbaues vonD-Xylose
Zusammenfassung Die chromatographische Analyse des Abbaues vonD-Xylose in reinem Wasser und Schwefelsäure bei Temperaturen von 180 – 220°C ergab die Bildung von bis zu 50 mol% Furfural. In bezug auf die Aktivierungsenergie zeigten sich keine signifikanten Unterschiede zwischen dem Abbau vonD-Xylose in reinem Wasser (E a =119.4 kJ/mol), 0.001M H2SO4 (E a =120.6 kJ/mol), 0.01M H2SO4 (E a =130.8 kJ/mol), and 0.1M H2SO4 (E a =120.7 kJ/mol). Unter alkalischen Bedingungen hingegen betrug die Aktivierungsenergie nur 63.7 kJ/mol. Dies weist auf einen unterschiedlichen Reaktionsmechanismus hin. Ferner konnte mittels Isotachophorese die Bildung von Brenztraubensäure, Ameisensäure, Glycolsäure, Milchsäure und Essigsäure nachgewiesen werden. Während sich die relativen Ausbeuten in Wasser und Schwefelsäure zwischen 0.8 und 7% bewegten, betrugen sie unter alkalischen Bedingungen 10 bis 23%.
  相似文献   

15.
CCSD(T) calculations have been used for identically nucleophilic substitution reactions on N‐haloammonium cation, X? + NH3X+ (X = F, Cl, Br, and I), with comparison of classic anionic SN2 reactions, X? + CH3X. The described SN2 reactions are characterized to a double curve potential, and separated charged reactants proceed to form transition state through a stronger complexation and a charge neutralization process. For title reactions X? + NH3X+, charge distributions, geometries, energy barriers, and their correlations have been investigated. Central barriers ΔE for X? + NH3X+ are found to be lower and lie within a relatively narrow range, decreasing in the following order: Cl (21.1 kJ/mol) > F (19.7 kJ/mol) > Br (10.9 kJ/mol) > I (9.1 kJ/mol). The overall barriers ΔE relative to the reactants are negative for all halogens: ?626.0 kJ/mol (F), ?494.1 kJ/mol (Cl), ?484.9 kJ/mol (Br), and ?458.5 kJ/mol (I). Stability energies of the ion–ion complexes ΔEcomp decrease in the order F (645.6 kJ/mol) > Cl (515.2 kJ/mol) > Br (495.8 kJ/mol) > I (467.6 kJ/mol), and are found to correlate well with halogen Mulliken electronegativities (R2 = 0.972) and proton affinity of halogen anions X? (R2 = 0.996). Based on polarizable continuum model, solvent effects have investigated, which indicates solvents, especially polar and protic solvents lower the complexation energy dramatically, due to dually solvated reactant ions, and even character of double well potential in reactions X? + CH3X has disappeared. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
Catalytic activity of Ru(acac)3 in the presence of different phosphorus compounds (P(OMe)3, P(OPh)3, PPh3 and dppe) was investigated for the first time in the hydrolysis of NaBH4. Phosphorus compound, usually known as poison in catalysis, is involved in the formation of a species which has higher catalytic activity in comparison with Ru(acac)3 alone. Varying the phosphorus compound affects the catalytic activity and lifetime of the catalyst as well as the kinetics and the activation parameters of the hydrolysis of NaBH4. For all of the phosphorus compounds, the hydrogen generation was found to be zero-order with respect to the substrate concentration and first-order regarding the catalyst concentration. The catalyst system with P(OMe)3 shows the highest catalytic activity and provides the largest total turnover number (TTON = 20,700 over 72 h) in the hydrolysis of NaBH4. The highest activation energy and enthalpy values were obtained for the catalyst with dppe (Ea = 59 ± 2, ΔH# = 60 ± 2 kJ/mol) while the lowest values were found for the catalyst system with PPh3 (Ea = 46 ± 2, ΔH# = 43 ± 1 kJ/mol).  相似文献   

17.
杨红梅 《高分子科学》2012,30(3):378-386
Crosslinking reaction of LDPE resin in the presence of dicumyl peroxide(DCP) was studied by isothermal rheological measurements at different temperatures and non-isothermal differential scanning calorimetry(DSC) technique with different heating rates.The kinetic parameters of crosslinking reaction were calculated by both rheological and DSC measurements.The results reveal that with the increase of DCP contents,the apparent activation energy,E_a,ranges from about 140 kj/mol to 170 kj/mol and the order of crosslinking reaction,n,approaches unity.The influence of measurement frequency,ω,on crosslinking reaction was also investigated.It can be found that n does not change with the increase ofω, and E_a decreases slightly with the increase ofω.  相似文献   

18.
朱脉勇  孟德海  王程姣  狄健  刁国旺 《催化学报》2013,34(11):2125-2129
以十六烷基三甲基溴化铵(CTAB)为保护剂, 采用水热法成功制备了CuO纳米片. 将制备的CuO纳米片在H2O2存在下用于催化氧化降解亚甲基蓝, 探讨了其在不同反应条件(如温度、氧化剂浓度及催化剂用量)下对亚甲基蓝降解反应的影响. 该催化反应符合一级动力学模型, 活化能为54.0kJ/mol. CuO纳米片表现出非常高的催化活性, 但其稳定性与重复利用性有待于进一步提高.  相似文献   

19.
Heat of adsorption is an excellent measure for adsorption strength and, therefore, very useful to study the influence of salt and temperature in hydrophobic interaction chromatography. The adsorption of bovine serum albumin and β‐lactoglobulin to Toyopearl Butyl‐650 M was studied with isothermal titration calorimetry to follow the unfolding of proteins on hydrophobic surfaces. Isothermal titration calorimetry is established as an experimental method to track conformational changes of proteins on stationary phases. Experiments were carried out at two different salt concentrations and five different temperatures. Protein unfolding, as indicated by large changes of molar enthalpy of adsorption Δhads, was observed to be dependent on temperature and salt concentration. Δhads were significantly higher for bovine serum albumin and ranged from 578 (288 K) to 811 (308 K) kJ/mol for 1.2 mol/kg ammonium sulfate. Δhads for β‐lactoglobulin ranged from 129 kJ/mol (288 K) to 186 kJ/mol (308 K). For both proteins, Δhads increased with increasing temperature. The influence of salt concentration on Δhads was also more pronounced for bovine serum albumin than for β‐lactoglobulin. The comparison of retention analysis evaluated by the van't Hoff algorithm shows that beyond adsorption other processes occur simultaneously. Further interpretation such as unfolding upon adsorption needs other in situ techniques.  相似文献   

20.
Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy (E a), pre-exponential factor (A), reaction order (n), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol−1, respectively, and from 1.71 × 105 to 5.81 × 107 s−1, respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol−1 and A from 2.55 × 102 to 1.18 × 107 s−1. Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a, A, and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号