首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Pathogenic mineral formations on human cardiac valves have been studied by electron microscopy, as well as high-resolution scanning and transmission microscopies. These are bacteriomorphic mineral formations, as indicated by the globular form of the mineral component represented by the carbonate-containing hydroxyl apatite, by aggregation of the component in colonies, and by the bacterial proper and bacterial glycocalix residues recorded in the samples. The composition and internal structure of the mineral component, as well as the nanosize of the apatite crystals, correlate with the presence of the amorphous and crystalline phases, whose ratio changes from sample to sample and is comparable with the Ca/P atomic ratio.  相似文献   

2.
Wide‐spread post‐photosynthetic fractionation processes deplete metabolites and plant compartments in 13C relative to assimilates to varying degrees. Fragmentation fractionation and exchange of metabolites with distinct isotopic signatures across organ boundaries further modify the patterns of plant isotopic composition. Heterotrophic organs tend to become isotopically heavier than the putative source material as a result of respiratory metabolism. In addition fractionation may occur during metabolite transport across organ and tissue boundaries. Leaf laminae, veins and petioles are leaf compartments that are arranged along a gradient of increasing weight of heterotrophic processes and along a transport chain. Thus, we expect to find consistent patterns of isotopic signatures associated with this gradient. Earlier studies on leaves of Fagus sylvatica, Glycine max, and Saccharum officinarum showed that the organic mass and cellulose of major veins or petioles were consistently more positive than the respective fraction in leaf laminae. The objective of the current study was to assess whether this pattern can be detected in a greater set of plant species. Leaves from ten species were collected in the summer of 2006 outdoors and in glasshouses. Leaf laminae including small veins were separated from the major veins and the isotopic signatures of the organic mass, and the soluble and non‐soluble fractions were measured for laminae and veins separately. The organic mass, and the soluble and non‐soluble fractions of leaf laminae, were depleted in 13C relative to the veins in all cases. A general trend for the signature of organic mass being more depleted in 13C than the soluble fraction is in accordance with well‐known patterns of fractionation between metabolites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A procedure using 5A zeolite sorption to separate cyclic/branched organic compounds from the linear ones was developed and carbon isotopic fractionation effects were investigated in different families of compounds, e.g. within the hydrocarbon and alcohol compounds. The 5A sieve has a pore size such that only linear components can be incorporated into the pores whereas the cyclic/branched compounds are remaining free in the organic solution. The sorbed compounds were released from the molecular sieve with HF and solvent extracted with hexane. The method enables the isolation of linear saturated classes, such as n-alkanes and n-fatty alcohols from branched/cyclic compounds without isotopic fractionation for compound-specific isotope analysis (CSIA) of delta(13)C. However, alkene hydrocarbons, sterols and some aromatics were completely or partly degraded with the molecular sieve.  相似文献   

4.
We have developed a methodology for (U-Th)/He thermochronology on a variety of mineral species. With many laboratories initiating research in the area of (U-Th)/He thermochronology, we recognize that there may be interest in a review of analytical procedures for uranium and thorium determination in single crystals of apatite, zircon, rutile, and fluorite. Uranium and thorium are both determined by inductively coupled plasma mass-spectrometry using an isotope dilution method. While standard and spike solutions can be purchased, their isotopic composition and the concentration of the standard solution need to be verified. Digestion procedures for apatite and fluorite are relatively straightforward, but zircon decomposition requires the use of pressure vessels or fusion. Matrix effects are shown to have an insignificant effect on isotope ratios, although isobaric interferences, particularly of PtAr+ on U isotopes, can be a problem. We include complete thermochronology datasets for replicate analysis of Durango apatite, Yucca Mountain fluorite, and an Australian megacryst zircon.  相似文献   

5.
The commonly used technique for determination of plant stable carbon isotope composition is analysis of CO(2) liberated during combustion of chemically extracted nitrocellulose or alpha-cellulose. The delta(13)C of cellulose is usually accepted as a more reliable record of growth environment conditions compared with bulk plant material analysis. Unfortunately, cellulose extraction techniques are time-consuming, and usually require toxic chemicals such as toluene, chloroform, benzene, methanol, concentrated acids, etc. We tested the possibility of replacing nitrocellulose analysis with bulk organic analysis. Sphagnum and Polytrichum mosses collected along a vertical transect (altitudes 500 to 1400 m), provided material for analysis in the wide range of delta(13)C: -32.66 per thousand and -26.20 per thousand for bulk organic matter and -24.11 per thousand and -31.86 per thousand for nitrocellulose. The correlation for delta(13)C value of extracted cellulose and delta(13)C values of bulk organic matter were very good (>0.95). Our results suggested that delta(13)C analyses can be performed on bulk plant material instead of cellulose, without significant loss of information, at least for Polytrichum and Sphagnum mosses. Moreover, we confirmed that the extraction process of nitrocellulose did not cause any significant isotopic fractionation.  相似文献   

6.
Discrimination against 13C during photosynthesis is a well-characterised phenomenon. It leaves behind distinct signatures in organic matter of plants and in the atmosphere. The former is depleted in 13C, the latter is enriched during periods of preponderant photosynthetic activity of terrestrial ecosystems. The intra-annual cycle and latitudinal gradient in atmospheric 13C resulting from photosynthetic and respiratory activities of terrestrial plants have been exploited for the reconstruction of sources and sinks through deconvolution by inverse modelling. Here, we compile evidence for widespread post-photosynthetic fractionation that further modifies the isotopic signatures of individual plant organs and consequently leads to consistent differences in delta13C between plant organs. Leaves were on average 0.96 per thousand and 1.91 per thousand more depleted than roots and woody stems, respectively. This phenomenon is relevant if the isotopic signature of CO2-exchange fluxes at the ecosystem level is used for the reconstruction of individual sources and sinks. It may also modify the parameterization of inverse modelling approaches if it leads to different isotopic signatures of organic matter with different residence times within the ecosystems and to a respiratory contribution to the average difference between the isotopic composition of plant organic matter and the atmosphere. We discuss the main hypotheses that can explain the observed inter-organ differences in delta13C.  相似文献   

7.
Bioleaching is a technology for the recovery of metals from minerals by means of microorganisms, which accelerate the oxidative dissolution of the mineral by regenerating ferric ions. Bioleaching processes take place at the interface of bacteria, sulfide mineral and leaching solution. The fundamental forces between a bioleaching bacterium and mineral surface are central to understanding the intricacies of interfacial phenomena, such as bacterial adhesion or detachment from minerals and the mineral dissolution. This review focuses on the current state of knowledge in the colloidal aspect of bacteria–mineral interactions, particularly for bioleaching bacteria. Special consideration is given to the microscopic structure of bacterial cells and the atomic force microscopy technique used in the quantification of fundamental interaction forces at nanoscale.  相似文献   

8.
Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of δ18OPO4 measurements using a ‘reverse‐plumbed’ thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF‐IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO4?3 and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of δ44Ca and 87Sr/86Sr in modern biogenic apatite and 143Nd/144Nd in fossil apatite. Our methodology yields an external precision of ± 0.15‰ (1σ) for δ18OPO4. The uncertainty is related to the preparation of the Ag3PO4 salt, conversion to CO gas in a reversed‐plumbed TC/EA, analysis of oxygen isotopes using a CF‐IRMS, and uncertainty in constructing calibration lines that convert raw δ18O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the demonstrated improvement in precision, should help to make apatite paleothermometry far more accessible to paleoclimate researchers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The stable carbon isotopic ratio of methane (δ(13)C-CH(4)) recovered from marine sediments containing gas hydrate is often used to infer the gas source and associated microbial processes. This is a powerful approach because of distinct isotopic fractionation patterns associated with methane production by biogenic and thermogenic pathways and microbial oxidation. However, isotope fractionations due to physical processes, such as hydrate dissolution, have not been fully evaluated. We have conducted experiments to determine if hydrate dissolution or dissociation (two distinct physical processes) results in isotopic fractionation. In a pressure chamber, hydrate was formed from a methane gas source at 2.5 MPa and 4 °C, well within the hydrate stability field. Following formation, the methane source was removed while maintaining the hydrate at the same pressure and temperature which stimulated hydrate dissolution. Over the duration of two dissolution experiments (each ~20-30 days), water and headspace samples were periodically collected and measured for methane concentrations and δ(13)C-CH(4) while the hydrate dissolved. For both experiments, the methane concentrations in the pressure chamber water and headspace increased over time, indicating that the hydrate was dissolving, but the δ(13)C-CH(4) values showed no significant trend and remained constant, within 0.5‰. This lack of isotope change over time indicates that there is no fractionation during hydrate dissolution. We also investigated previous findings that little isotopic fractionation occurs when the gas hydrate dissociates into gas bubbles and water due to the release of pressure. Over a 2.5 MPa pressure drop, the difference in the δ(13)C-CH(4) was <0.3‰. We have therefore confirmed that there is no isotope fractionation when the gas hydrate dissociates and demonstrated that there is no fractionation when the hydrate dissolves. Therefore, measured δ(13)C-CH(4) values near gas hydrates are not affected by physical processes, and can thus be interpreted to result from either the gas source or associated microbial processes.  相似文献   

10.
Volatile compound biodegradation analysis usually requires the time-consuming step of extraction of the analytes from the matrix using organic solvents or costly radioactive-compounds. Thus, it is desirable to have a simple and fast technique to generate a good evaluation of bacterial biodegradation. The goal of this research was to develop a methodology on the basis of static headspace-gas chromatography/mass spectrometry (HS-GC/MS) to evaluate the level of volatile contaminant biodegradation. The effects of the following parameters were studied: temperature and time of equilibration. The biodegradation experiments were carried out with bacteria inoculation in mineral media in presence of volatile hydrocarbon compounds (toluene, p-xylene, nonane and naphthalene). Autoclaved inoculates were used as control and reference sample. The optimal headspace conditions were observed when the vials were heated at 80 degrees C for 20 min, the syringe at 81 degrees C and an injection volume of 0.4 mL was used. This methodology has the advantage of being relative free from matrix effects.  相似文献   

11.
A Bermond  S Bourgeois 《The Analyst》1992,117(3):685-687
The role of soluble organic matter on the mobility of cadmium in model compounds and soils is discussed. For model compounds, a simple predictive model is proposed to describe the competition between metal adsorption and the formation of complexes in the solution, using conditional constants to predict the adsorption behaviour of metallic cations in the presence of an organic ligand. Experimental results are presented using a clay mineral and ethylenediaminetetraacetic acid as organic ligand to assess this model for cadmium. Soil experiments are also presented to illustrate the influence of soluble complexing organic matter on the mobility of cadmium. In this instance, mobility is shown to depend on three interactive parameters: pH, oxidation-reduction reactions and formation of complexes.  相似文献   

12.
Four colloidal-size fractions of strongly anisotropic particles of nontronite (NAu-2) having different ratios of basal to edge surfaces were incubated in the presence of heterotrophic soil bacteria to evaluate how changes in mineral surface reactivity influence microbial dissolution rate of minerals. To avoid any particle aggregation, which could change the reactive surface area available for dissolution, NAu-2 particles were immobilized in a biocompatible TEOS-derived silica matrix. The resulting hybrid silica gels support bacterial growth with NAu-2 as the sole source of Fe and Mg. Upon incubation of the hybrid material with bacteria, between 0.3% and 7.5% of the total Fe included in the mineral lattice was released with a concomitant pH decrease. For a given pH value, the amount of released Fe varied between strains and was two to twelve-fold higher than under abiotic conditions. This indicates that complexing agents produced by bacteria play an important role in the dissolution process. However, in contrast with proton-promoted NAu-2 dissolution (abiotic incubations) that was negatively correlated with particle size, bacterial-enhanced dissolution was constant for all size fractions used. We conclude that bio-dissolution of nontronite particles under acidic conditions seems to be controlled by bacterial metabolism rather than by the surface reactivity of mineral.  相似文献   

13.
Molecular weight (MW) fractionation of Suwannee River fulvic acid (SRFA) and purified Aldrich humic acid (PAHA) by adsorption onto kaolinite and hematite was investigated in equilibrium and rate experiments with a size-exclusion chromatography system using ultraviolet (UV) light detection. The extent of adsorptive fractionation based on UV detection was positively correlated with the percent carbon adsorption for both humic substances (HS), although the specific fractionation pattern observed depended on the particular HS and mineral used. Higher MW fractions of SRFA, an aquatic HS, were preferentially adsorbed to both kaolinite and hematite whereas the fractionation trends for PAHA, a terrestrial peat HS, differed for the two minerals. The contrasting fractionation patterns for SRFA versus PAHA can be explained reasonably well by the different structural trends that occur in their respective MW fractions and the underlying adsorption processes. Rate studies of adsorptive fractionation revealed an initial rapid uptake of smaller HS molecules by the mineral surfaces, followed by their replacement at the surface by a much slower uptake of the larger HS molecules present in aqueous solution.  相似文献   

14.
The present study describes the chemical composition of essential oils of Pistacia lentiscus L., collected from different regions of Eastern Morocco. The essential oils were obtained by hydro-distillation of the areal parts and analyzed by gas chromatography and gas chromatography coupled to a mass spectrometry. The study was conducted to determine the phytochemistry and antibacterial activities of oil from P. lentiscus leaves against both bacteria using the disc diffusion method. For Gram-negative, Salmonella sp., Klebsiella, Escherichia coli, and Pseudomonas, and for Gram-positive, Staphylococcus aureus, and Streptococcus were used as test bacterial strains. In the end, we completed the previous study by determining the minor and major mineral contents of leaves of P. lentiscus. The yield of P. lentiscus oil ranged between 0.13 and 0.23 %, with the chemical composition changing from one region to another. The variations are important between plant populations. The major oil components of PLL oil from Taforalt and Saidia (humid climate) were limonene and α-pinene, while myrcene, β-caryophyllene were found to be the major components of Laayoune and Jerada oil (semi-arid climate). For the mineral composition of PLL, the results show that trace element profiles of leaves from different regions differed significantly; the highest levels of K, Mg, Fe, and Ca were found in leaves of all locations, while the leaves collected from the Jerada region had the highest content of mineral substrates. This work also attempts to contribute to the knowledge of the nutritional properties of this plant; the results will be investigated for the evaluation of dietary information.  相似文献   

15.
Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented.  相似文献   

16.
An ethanol (EtOH) solution of polymerized vinyltrimethoxysilane (VTMS), about 20-mers, was mixed with an aqueous solution of calcium acetate (Ca(OAc)2) and refluxed in N2 for 1 h to give sols of a typical composition VTMS : H2O : EtOH : Ca(OAc)2 = 1 : 9 : 8 : 0.05 (mol). Homogeneous films could be produced, by dip-coating, on Nylon6® and soda-lime glass, but not on polypropylene or polytetrafluoroethylene. The gel films did not deposit apatite within 14 days of soaking in a simulated body fluid whereas films abraded with emery paper as well as bulk gels deposited apatite on the surfaces within 7 days, indicating the present gel was suitable for bioactive coatings on Nylon6®  相似文献   

17.
Changes in isotopic 13C signatures of CO2-C evolved during decomposition of a sugar (glucose), a fatty acid (palmitic acid), a protein (albumin), a structural biopolymer (lignin) and bulk plant tissue (aerial shoots from Lolium perenne) were monitored over a period of 76 days. All materials were sterilized and inoculated with either of two different species of white rot fungi, Phanerochaete chrysosporium or Coriolus versicolor, and incubated in sealed bottles at 28 degrees C. The CO2 concentration in the jars was periodically determined using an infrared gas analyzer and its isotopic (13C) signature was assessed using a trace gas (ANCA TGII) module coupled to an isotope ratio mass spectrometer (IRMS, Europa 20-20). L. perenne material inoculated with C. versicolor showed the highest C mineralization activity with approximately 70% of total C evolved as CO2 after 76 days of incubation, followed by glucose. Substrates inoculated with C. versicolor generally decomposed faster than when degraded by P. chrysosporium, except for lignin, where no significant differences between the two fungi types were found and CO2-C released was less than 2% of the initial C. Considerable 13C isotopic fractionation during the degradation of plant tissue and of pure biochemical compounds was revealed as well as progressive shifts in cumulative CO2-13C isotopic signatures over time. During the first stages of decomposition, the CO2-C released was usually depleted in 13C as compared with the initial solid substrate, but with ongoing decomposition the CO2-C evolved became progressively more enriched in 13C. P. chrysosporium usually showed a slightly higher 13C fractionation than C. versicolor during the first decomposition phase. At posterior decomposition stages isotopic discrimination was often stronger by C. versicolor. These findings on isotopic 13C discrimination during microbial degradation both of simple biochemical compounds and of complex vegetal tissue confirmed not only the existence of significant 13C isotopic fractionation during plant residue decomposition, but also the existence of non-random isotopic distribution within substrates. They also demonstrated the ability of microorganisms to selectively discriminate against 13C even when degrading an isolated simple substrate.  相似文献   

18.
Evaporation is one of the key attenuation processes for near‐surface volatile organic compounds (VOCs) in the upper soil zone. Evaporation experiments were performed to investigate the carbon isotope fractionation of benzene and toluene during progressive and non‐equilibrium evaporation at room temperature. Considerable carbon isotope fractionation occurred during evaporative enrichment of benzene and toluene. The carbon isotope compositions of residual compounds increased exponentially with increasing evaporation. Thus, the remaining liquids become isotopically heavier, and the process follows a Rayleigh trend. This result is compatible with the direction of isotopic changes associated with both microbial degradation and volatilization of hydrocarbons previously observed in soil columns, but shows exactly the opposite behavior to previous equilibrium volatilization findings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A second-generation multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) was applied to lithium isotopic measurements. The high sensitivity of the ICP-MS enabled high precision (±0.82‰, 2σ) analyses with small amount of Li (∼45 ng Li). A single-step column separation protocol was established with which rapid purification of lithium from rock solutions can be carried out with reduced blank (<10 pg). The influence of potential sources of error for acquisition of lithium isotopic data introduced during the separation, such as matrix effects and isotopic fractionation due to incomplete recovery, were examined with an artificially mixed solution of a composition similar to that of basalt, which was doped with Li isotopic standard reagent. The examinations demonstrated that our protocol suffered from negligible isotopic fractionation.The Li isotopic ratios obtained by our method for seawater and standard rocks (JA-1, JB-2, and JB-3) agree well with those of previously reported data by Moriguti and Nakamura [1] and [2], which were determined using a four-step column separation method and thermal ionisation mass spectrometry (TIMS). Our separation protocol combined with a sensitive MC-ICP-MS will enable Li isotopic analyses on silicate rock with low Li contents, such as meteorite and peridotites with increased sample throughput.  相似文献   

20.
Organic compounds have been extracted from calcium carbonate skeletons produced by three invertebrate species belonging to distinct phyla. The soluble parts of these skeleton matrices were isolated and analysed by synchrotron-based X-ray spectroscopy (XPS). The presence of calcium associated with these organic materials was revealed in every sample studied, with important variations in Ca 2p binding energy from species to species. Measured Ca 2p binding energy values are more related to compositional diversity of the mineralizing matrices of the skeletons, whose taxonomic dependence has long been established, than to the Ca carbonate polymorph selected to build the skeletal units. This suggests a physical bond between species-specific mineralizing organic assemblages and the associated calcium. Remarkably, the binding energy of 2p electrons in calcium associated with mineralizing matrices is consistently higher than Ca 2p values obtained in purely mineral carbonate (both calcite and aragonite). The ability both to identify and measure the effect of organic matrices on their mineral counterpart in calcareous biominerals opens a new perspective for a functional approach to the biomineralization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号