首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finely controlled circularly polarized luminescence (CPL) supramolecular polymerization based on a tetraphenylethene core with four l ‐ or d ‐alanine branch side chains (l ‐ 1 and d ‐ 1 ) in the solution state is presented, resulting from the tuning of mechanical stimulus. Weak, green emissions of l ‐ 1 and d ‐ 1 in tetrahydrofuran (THF) were converted into strong blue emissions by tuning the mechanical stimulus. The strong blue emissions were caused by an aggregation‐induced emission (AIE) effect during the formation of a supramolecular polymer. Lag time in the supramolecular polymerization was drastically reduced by the mechanical stimulus, which was indicative of the acceleration of the supramolecular polymerization. A significant enhancement of circular dichroism (CD) and CPL signals of l ‐ 1 and d ‐ 1 was observed by tuning the rotational speed of the mechanical stimulus, implying that the chiral supramolecular polymerization was accelerated by the mechanical stimulus.  相似文献   

2.
A new class of supramolecular and biomimetic glycopolymer/poly(epsilon-caprolactone)-based polypseudorotaxane/glycopolymer triblock copolymers (poly(D-gluconamidoethyl methacrylate)-PPR-poly(D-gluconamidoethyl methacrylate), PGAMA-PPR-PGAMA), exhibiting controlled molecular weights and low polydispersities, was synthesized by the combination of ring-opening polymerization of epsilon-caprolactone, supramolecular inclusion reaction, and direct atom transfer radical polymerization (ATRP) of unprotected D-gluconamidoethyl methacrylate (GAMA) glycomonomer. The PPR macroinitiator for ATRP was prepared by the inclusion complexation of biodegradable poly(epsilon-caprolactone) (PCL) with alpha-cyclodextrin (alpha-CD), in which the crystalline PCL segments were included into the hydrophobic alpha-CD cavities and their crystallization was completely suppressed. Moreover, the self-assembled aggregates from these triblock copolymers have a hydrophilic glycopolymer shell and an oligosaccharide threaded polypseudorotaxane core, which changed from spherical micelles to vesicles with the decreasing weight fraction of glycopolymer segments. Furthermore, it was demonstrated that these triblock copolymers had specific biomolecular recognition with concanavalin A (Con A) in comparison with bovine serum albumin (BSA). To the best of our knowledge, this is the first report that describes the synthesis of supramolecular and biomimetic polypseudorotaxane/glycopolymer biohybrids and the fabrication of glucose-shelled and oligosaccharide-threaded polypseudorotaxane-cored aggregates. This hopefully provides a platform for targeted drug delivery and for studying the biomolecular recognition between sugar and lectin.  相似文献   

3.
We report the H‐type supramolecular polymerization of two new hydrophobic BODIPY derivatives equipped with ester and amide linkages. Whereas the ester‐containing BODIPY derivative undergoes an isodesmic supramolecular polymerization in which the monomers are parallel‐oriented, the replacement of the ester by amide groups leads to a highly cooperative self‐assembly process into H‐type aggregates with a rotational displacement of the dye molecules within the stack. The dye organization imposed by simultaneous π–π and hydrogen bonding interactions is the driving force for the cooperative supramolecular polymerization, whereas the absence of additional hydrogen bonds for the ester‐containing moiety does not suffice to induce cooperative phenomena.  相似文献   

4.
The self-assembly of an amide-functionalized dithienyldiketopyrrolopyrrole (DPP) dye in aqueous media was achieved through seed-initiated supramolecular polymerization. Temperature- and time-dependent studies showed that the spontaneous polymerization of the DPP derivative was temporally delayed upon cooling the monomer solution in a methanol/water mixture. Theoretical calculations revealed that an amide-functionalized DPP derivative adopts an energetically favorable folded conformation in the presence of water molecules due to hydration. This conformational change is most likely responsible for the trapping of monomers in the initial stage of the cooperative supramolecular polymerization in aqueous media. However, the monomeric species can selectively interact with externally added fragmented aggregates as seeds through concerted π-stacking and hydrogen-bonding interactions. Consequently, the time course of the supramolecular polymerization and the morphology of the aggregated state can be controlled, and one-dimensional fibers that exhibit a J-aggregate-like bathochromically shifted absorption band can be obtained.  相似文献   

5.
Using a number of classes of such sector-shaped macromolecules as derivatives of 2,3,4- and 3,4,5- tri(dodecyloxy)benzenesulfonic acid and dendrimers based on gallic acid as an example, the main stages in the formation of supramolecular ensembles are considered: the formation of individual supramolecular aggregates due to the weak noncovalent interactions of mesogenic groups, and the subsequent ordering within these aggregates, which lowers the free energy of a system. Supramolecular aggregates are in turn organized into two- or three-dimensional supramolecular lattices. It is shown that the shape of the supramolecular aggregates and its change along with temperature are functions of the chemical structure of the mesogenic group (resulting in the controlled design of complex self-organizing systems with a given response to external stimuli).  相似文献   

6.
聚合有机凝胶印迹膜对D-和L-苯丙氨酸的选择性吸附   总被引:1,自引:0,他引:1  
以1-甲基-2,4-二(N’-十八烷脲基)苯为凝胶剂,以液体单体丙烯酸-2-乙基己酯、甲基丙烯酸甲酯、二甲基丙烯酸聚乙二醇(200)酯以及模版分子和光敏引发剂的混合物为溶剂,研究表明,这种二烷基脲型凝胶剂在这些单体混合物中可进行超分子自组装,形成互相缠绕的具有纳米尺寸的纤维状聚集体,最终导致这些单体混合物首先形成稳定的超分子有机凝胶。然后经UV光引发聚合,经乙醇抽提凝胶剂聚集体和模板分子,制备了一种新型分子印迹的聚合有机凝胶薄膜。探讨了不同凝胶剂浓度、模板分子浓度、单体混合物配比所制备的印迹聚合有机凝胶薄膜对D-和L-苯丙氨酸吸附效率的影响。结果表明所制备的印迹聚合超分子凝胶对L-苯丙氨酸吸附效率约为对D-苯丙氨酸吸附效率的3~4倍,表现出明显的选择性吸附性。  相似文献   

7.
The self‐assembly of a new perylene bisimide (PBI) organogelator with 1,7‐dimethoxy substituents in the bay position affords non‐fluorescent H‐aggregates at high cooling rates and fluorescent J‐aggregates at low cooling rates. Under properly adjusted conditions, the kinetically trapped “off‐pathway” H‐aggregates are transformed into the thermodynamically favored J‐aggregates, a process that can be accelerated by the addition of J‐aggregate seeds. Spectroscopic studies revealed a subtle interplay of π–π interactions and intra‐ and intermolecular hydrogen bonding for monomeric, H‐, and J‐aggregated PBIs. Multiple polymerization cycles initiated from the seed termini demonstrate the living character of this chain‐growth supramolecular polymerization process.  相似文献   

8.
J-aggregates are highly desired dye aggregates but so far there has been no general concept how to accomplish the required slip-stacked packing arrangement for dipolar merocyanine (MC) dyes whose aggregation commonly affords one-dimensional aggregates composed of antiparallel, co-facially stacked MCs with H-type coupling. Herein we describe a strategy for MC J-aggregates based on our results for an amphiphilic MC dye bearing alkyl and oligo(ethylene glycol) side chains. In an aqueous solvent mixture, we observe the formation of two supramolecular polymorphs for this MC dye, a metastable off-pathway nanoparticle showing H-type coupling and a thermodynamically favored nanosheet showing J-type coupling. Detailed studies concerning the self-assembly mechanism by UV-Vis spectroscopy and the packing structure by atomic force microscopy and wide-angle X-ray scattering show how the packing arrangement of such amphiphilic MC dyes can afford slip-stacked two-dimensional nanosheets whose macrodipole is compensated by the formation of a bilayer structure. As an additional feature we demonstrate how the size of the nanosheets can be controlled by seeded living supramolecular polymerization.  相似文献   

9.
A comparative investigation of self-assembly in poly(methacrylates) with bulky substituents based on gallic acid both in the condensed state and in hexane solutions has been performed by using the methods of SAXS and DSC. The size and shape of the formed supramolecular aggregates have been analyzed for the polymers of two different degrees of polymerization (150 and 21). In fresh solutions of a low-molecular-mass polymer, extended piles composed of several molecules are formed. Each molecule from a disk with a diameter of ~4.4 nm, which is similar to the diameter of columnar phase cylinders in the solid state. In solutions of a highmolecular-mass polymer, several molecules form a wormlike particle. The observed supramolecular aggregates are unstable: within several months, their order breaks down and particles are dissolved.  相似文献   

10.
Stereoselective and temporally controlled supramolecular polymerizations are ubiquitous in nature and are desirable attributes for the design of chiral, well-defined functional materials. Kinetically controlled, living supramolecular polymerization (LSP) has emerged recently for the synthesis of supramolecular polymers with controlled length and narrow dispersity. On the other hand, stringent design requirements for chiral-discriminating monomers precludes the stereoselective control of the supramolecular polymer structure. Herein, a synergetic stereo- and structural control of supramolecular polymerization by the realization of an unprecedented stereoselective seed-induced LSP is reported. Homochiral and seeded growth is demonstrated with bischromophoric naphthalene diimide (NDI) enantiomers with a chiral binaphthyl amine core, exhibiting strong self-recognition abilities and pathway complexity.  相似文献   

11.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   

12.
The intermolecular interactions between a ruthenium-based photosensitizer ([Ru(tbbpy)(2)(biH(2))](2+)) and a molecular metal oxide ([β-Mo(8)O(26)](4-)) are investigated in solution and in the solid state. The supramolecular interactions were studied using (1)H-NMR, UV-Vis and emission spectroscopy, ESI mass spectrometry and single-crystal X-ray diffraction. The formation of supramolecular aggregates was observed both in the crystal lattice and in solution. In addition, it is shown that aggregation in solution can be controlled by the competitive formation of ion pairs.  相似文献   

13.
A perylene bisimide anchored with melamine hydrogen-bonding units has been prepared, and its supramolecular polymerization upon binding with N-dodecylcyanurate (CA) was examined. The resulting flexible supramolecular polymers self-organized via a pi-pi stacking interaction between perylene chromophores, affording ribbonlike aggregates in cyclic alkanes and ropelike aggregates in acyclic alkanes to form gels. [structure: see text]  相似文献   

14.
采用原子转移聚合方法合成了聚N-异丙基丙烯酰胺和聚醚树技体的不对嵌段共聚物Dendr.PE-PNI-PAM。实验结果表明Dendr.PE-PNIPAM分子在水中能通过疏水缔合作用形成具有双分子膜结构的超分子聚集体。临界缔合浓度(CAC)、聚集体的大小及形貌对树枝体的代数具有明显的依赖关系。该聚集体对温度刺激具有响应性,并在人体体温温度(37.5℃)发生相转变。在高于相转变温度时,Dendr.PE-PNIPAM分子形成管状、带状等多重形态的超级结构的聚集体。  相似文献   

15.
The first topochemical 1,6-polymerization of a triene has been observed. The required supramolecular structure for this polymerization was achieved by the pi-pi stacking of the isonicotinate functionality. The crystal environment of this polymerization reaction controlled both the molecular and supramolecular structure of the polymer and allowed its structure to be determined by single-crystal X-ray diffraction.  相似文献   

16.
Two highly dipolar merocyanine dyes were tethered by a rigid tris(n-dodecyloxy)xylylene unit that preorganizes the dyes for a supramolecular polymerization process through intermolecular aggregation of the dyes. UV/vis spectroscopy revealed a solvent dependent equilibrium between monomeric dyes and two different types of dye aggregates that are characterized by hypsochromically shifted D- and H-type absorption bands. Taking into account the ditopic nature of the supramolecular building blocks, the occurrence of the D-band indicates the formation of an oligomeric/polymeric supramolecular chain whereas the observation of the H-band suggests a higher order assembly. For the H-aggregated dyes, intrinsic viscosities exceed 0.65 L g(-1) in methylcyclohexane, values typically found for macromolecular solutions. At higher concentration, further association of these aggregates takes place by entanglement of the alkyl groups leading to a substantial increase in viscosity and gelation. Rheology studies show linear viscoelastic behavior which was attributed to the formation of an entangled dynamic network. AFM and cryo-TEM studies of the gel reveal long and stiff rod-type assemblies. X-ray diffraction studies for a solid film show columnar mesomorphism. Based on these results, a structural model is proposed in which six helically preorganized strands of the supramolecular polymer intertwine to form a rod with a diameter of about 5 nm. Within these rods all dyes are tightly aggregated in a tubular fashion giving rise to delocalized excitonic states, and the pi-conjugated tube is jacketed by the tridodecyloxy groups.  相似文献   

17.
A major challenge in supramolecular polymerization is controlling the stability of the polymers formed, that is, controlling the rate of monomer exchange in the equilibrium between monomer and polymer. The exchange dynamics of supramolecular polymers based on benzene‐1,3,5‐tricarboxamide (BTA) can be regulated by copolymerizing molecules with dendronized (dBTA) and linear (nBTA) ethylene glycol‐based water‐soluble side chains. Whereas nBTAs form long nanofibers in water, dBTAs do not polymerize, forming instead small spherical aggregates. The copolymerization of the two BTAs results in long nanofibers. The exchange dynamics of both the BTA monomers in the copolymer are significantly slowed down in the mixed systems, leading to a more stable copolymer, while the morphology and spectroscopic signature of the copolymers are identical to that of nBTA homopolymer. This copolymerization is the supramolecular counterpart of styrene/ maleic anhydride copolymerization.  相似文献   

18.
The helical and tubular structures self-assembled from proteins have inspired scientists to design synthetic building blocks that can be "polymerized" into supramolecular polymers through coordinated noncovalent interactions. However, cooperative supramolecular polymerization from large, synthetic macromolecules remains a challenge because of the difficulty of controlling the structure and interactions of macromolecular monomers. Herein we report the synthesis of polypeptide-grafted comb polymers and the use of their tunable secondary interactions in solution to achieve controlled supramolecular polymerization. The resulting tubular supramolecular structures, with external diameters of hundreds of nanometers and lengths of tens of micrometers, are stable and resemble to some extent biological superstructures assembled from proteins. This study shows that highly specific intermolecular interactions between macromolecular monomers can enable the cooperative growth of supramolecular polymers. The general applicability of this strategy was demonstrated by carrying out supramolecular polymerization from gold nanoparticles grafted with the same polypeptides on the surface.  相似文献   

19.
The polymerization of methacrylic acid was investigated in various solvents under the action of gamma-rays. It was found that, as in the case of acrylic acid, solvents could be divided into groups according to the observed effects. The addition of methanol or dioxane up to 50 per cent does not significantly alter the polymerization rate. These two solvents do not dissociate the plurimolecular aggregates of methacrylic acid, the presence of which is demonstrated by the high viscosity of the medium. In the presence of either toluene or n-hexane, the rate gradually decreases and the aggregates are dissociated. Chloroform and CCl4 also dissociate the aggregates but lead to acceleration of the reaction. This effect which was not observed with acrylic acid presumably results from an energy transfer process. The polymerization of methacrylic acid in bulk and in solution has a very small overall activation energy, 1·0–1·5 kcal/mole between 16 and 60°. All conversion curves are linear in contrast to the case of acrylic acid where auto-accelerated conversion curves were observed in most mixtures. A comparison of these results shows that the initial rates of polymerization of acrylic acid follow relationships similar to those observed for methacrylic acid except for the chlorinated solvents. It is concluded that the molecular aggregates produce the same influence on the polymerization of methacrylic acid as on the initial stages of the reaction for acrylic acid, but the “matrix effect” of poly(acrylic acid) does not appear in the case of poly(methacrylic acid).  相似文献   

20.
《中国化学快报》2022,33(11):4856-4859
Herein, we adopt a simple supramolecular strategy to effectively control the tautomerism of ureidopyrimidinone (UPy) moiety and ultimately realize the complete arrangement of enol configuration. The obtained UPy derivatives containing self-complementary quadruple hydrogen bonding interactions can spontaneously self-assemble towards the formation of well-controlled, self-organized supramolecular nanostructure morphologies in both chloroform and water. The resulting aggregates had been fully characterized by various spectroscopy (absorption, emission) and microscopy (TEM, SEM and AFM) studies. It is anticipated that this study can provide an exact and excellent monomeric unit for controllable and precise supramolecular polymerization. The results achieved here also demonstrate the utility and feasibility of multiple hydrogen bonds to direct the self-assembly of small-molecule building blocks in aqueous media, which provides a strategy for the construction of well-defined and stable supramolecular architectures with chemical functionalities and physical properties as advanced materials for biological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号