首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Methanol adsorption on ion‐sputtered Pt(111) surface exhibiting high concentration of vacancy islands and on (2 × 1)Pt(110) single crystal were investigated by means of photoelectron spectroscopy (PES) and thermal desorption spectroscopy. The measurements showed that methanol adsorbed at low temperature on sputtered Pt(111) and on (2 × 1)Pt(110) surfaces decomposed upon heating. The PES data of methanol adsorption were compared to the data of CO adsorbed on the same Pt single crystal surfaces. In the case of the sputtered Pt(111) surface, the dehydrogenation of HxCO intermediates is followed by the CO bond breakage. On the (2 × 1)Pt(110) surface, carbon monoxide, as product of methanol decomposition, desorbed molecularly without appearance of any traces of atomic carbon. By comparing both platinum surfaces we conclude that methanol decomposition occurs at higher temperature on sputtered Pt(111) than on (2 × 1)Pt(110). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
An electrochemical study of cobalt electrodeposition onto a polycrystalline platinum electrode from an aqueous solution (10−2 M CoCl2 + 1 M NH4Cl (pH 9.5)) was carried out through cyclic voltammetry and potential step techniques. Analysis of the voltammetric data clearly showed that a cobalt adlayer is formed during the application of potential in the underpotential deposition (upd) region. Formation of this cobalt adlayer involved the simultaneous presence of both adsorption and 2D nucleation processes. Cobalt adlayers obtained by linear voltammetry in upd region were analyzed employing diffuse reflectance spectroscopy (DRS). By using theoretical quantum studies at PM6//HF/LANL1MB level, it was possible to assign the peaks obtained by DRS at 328 and 337 nm to the cobalt adsorption on Pt(111) and Pt(100), respectively, while the signals recorded at 355 and 362 nm were related with the clean platinum surfaces Pt(100) and Pt(111). Also, quantum calculations at the PM6 level indicated that the energy formation order is Co-Pt(100) > Co-Pt(111) > Co-Pt(110) > Co-Co(surface).  相似文献   

3.
In the present work, the Pt(111) surface was disordered by controlling the density of {110}- and {100}-type defects. The cyclic voltammogram (CV) of a disordered surface in acid media consists of three contributions within the hydrogen adsorption/desorption region: one from the well-ordered Pt(111) symmetry and the other two transformed from the {111}-symmetry with contributions of {110}- and {100}-type surface defects. The ethanol oxidation reaction (EOR) was studied on these disordered surfaces. Electrochemical studies were performed in 0.1 M HClO4+0.1 M ethanol using cyclic voltammetry and chronoamperometry. Changes in current densities associated to the specific potentials at which each oxidation peak appears suggest that different surface domains of disordered platinum oxidize ethanol independently. Additionally, as the surface-defect density increases, the EOR is catalysed better. This tendency is directly observed from the CV parameters because the onset and peak potentials are shifted to less positive values and accompanied by increases in the oxidation-peak current on disordered surfaces. Similarly, the CO oxidation striping confirmed this same tendency. Chronoamperometric experiments showed two opposite behaviors at short oxidation times (0.1 s). The EOR was quickly catalyzed on the most disordered surface, Pt(111)-16, and was then rapidly deactivated. These results provide fundamental information on the EOR, which contributes to the atomic-level understanding of real catalysts.  相似文献   

4.
Structural effects on intermediate species of methanol oxidation are studied on low-index planes of platinum using in-situ infrared (IR) spectroscopy. A flow cell is designed for rapid migration of reactant and product species on the electrode surface. IR spectra show adsorption of formate and the formation of carbonate species on the Pt(111) surface at potentials higher than that of CO oxidation. The band assignments for carbonate and formate are confirmed by vibrational isotope shifts. On Pt(100), the absorption band of adsorbed formate is much smaller than that on Pt(111). On the other hand, there is no adsorbed formate on Pt(110) in the potential region examined. The band intensity of formate follows the order: Pt(111)>Pt(100)>Pt(110). This order is opposite to that of the current density in the regions of higher potential. Adsorbed formate on Pt(111) behaves like a catalyst-poisoning intermediate, like adsorbed CO.  相似文献   

5.
Technique of modification of basal faces Pt(hkl) by adatoms and epitaxial copper deposits is developed. Analysis of potentiostatic current transients of copper deposition/dissolution and atomic force microscopy showed that the activity of Pt(hkl) faces regarding the processes of copper nucleation and epitaxial growth increases in the sequence of Pt(111) < Pt(110) < Pt(100). The reaction of nitrate anion reduction is sensitive towards the surface structure, not only in the case of platinum, but also in the case of copper deposits (including a monolayer of adatoms). The highest process rate is observed for the Pt(100) electrode modified by a monolayer of adatoms or islands of bulk copper; nitrate reduction at the lowest rate occurs at Pt(111) + Cu electrodes. Structure-sensitive competitive adsorption of background electrolyte and nitrate anions is the factor that largely determines the kinetics of nitrate reduction on different faces of platinum single crystal and copper deposits.  相似文献   

6.
Sb在Pt(100),Pt(110),Pt(111)及Pt(320)上不可逆吸附的电化学特性   总被引:3,自引:0,他引:3  
研究了Sb在Pt(1 0 0 ) ,Pt(1 1 0 ) ,Pt(1 1 1 )和Pt(32 0 )单晶面上不可逆吸附的电化学特性 .发现当扫描电位的上限Eu≤ 0 .45V时 ,Sbad可以稳定地吸附在Pt(1 0 0 ) ,Pt(1 1 0 )和Pt(1 1 1 )表面 ,而Sbad在Pt(32 0 )表面稳定的电位较低 ,为Eu≤ 0 .40V .从饱和吸附Sb的铂单晶电极出发 ,通过改变电位扫描上限Eu 和电位扫描圈数可以获得不同Sb覆盖度 (θSb)的电极 .根据Sb和H在铂单晶电极表面共吸附的定量数据 ,对Sb在不同铂单晶面上饱和吸附的模型进行了初步探讨 .  相似文献   

7.
Surface processes of CO2 reduction on Pt(210), Pt(310), and Pt(510) electrodes were studied by cyclic voltammetry. Different surface structures of these platinum single crystal electrodes were obtained by various treatment conditions. The experimental results illustrated that the electrocatalytic activity of Pt single crystal electrodes towards CO2 reduction is decreased in an order of Pt(210)>Pt(310)>Pt(510), i.e., with the decrease of (110) step density on well-defined surfaces. When the surfaces were reconstructed due to oxygen adsorption, the catalytic activity of all the three electrodes has been enhanced to a certain extent. Although the activity order remains unchanged, the electrocatalytic activity has been enhanced more significantly as the density of (110) step sites is more intensive on the Pt single crystal surface. It has revealed that the more open the surface structure is, the more active the Pt single crystal electrode will be, and the easier for the electrode to be transformed into a surface structure that exhibits higher activity under external inductions. However, the relatively ordered surfaces of Pt single crystal electrode are comparatively stable under the same external inductions. The present study has gained knowledge on the interaction between CO2 and Pt single crystal electrode surfaces at a microscopic level, and thrown new insight into understanding the surface processes of electrocatalytic reduction of CO2.  相似文献   

8.
When Cu(110), Ni(l 10), Ag(110) surfaces are exposed to O2 at room temperature, one dimensional metal-oxygen strings grow in the < 001 > direction of the (110) surfaces. A similar phenomenon occurs in the adsorption of H2 on Ni( 110) surface at room temperature, where the one dimensional strings grow along the < 110 > direction. These phenomena are undoubtedly different from the adsorption induced reconstruction but are explained by the chemical reconstruction involving the formation of quasi-compounds and their self-ordering on the metal surfaces. The chemical reconstruction is indispensablly important to understand the structure and catalysis of alloy and bimetallic surfaces. Pt0.25Rh0.75(100) alloy surface being active for the reaction of NO with H2 is an interesting example. When the Pt-Rh(100) alloy surface is exposed to NO or O2 at arround 500 K, a p(3 × 1) ordered Rh-O over-layer is obtained on a Pt-enriched 2nd layer by the chemical reconstruction. Ordering of Rh-0 in the p(3 × 1) structure on the Pt(100) surface was reproduced by heating a Rh/Pt(100) bimetallic surface in O2, and the chemical reconstruction making the p(3 × 1) Rh-O overlayer on a Pt enriched 2nd layer was also proved by heating a Pt/Rh(100) bimetallic surface in O2 or NO. The activation mechanism of the Pt-Rh alloy and the Pt/Rh bimetallic surfaces by the chemical reconstruction was evidently shown by using a Pt deposited Rh(100), Pt/Rh(100), surface. That is, the Pt/Rh(100) is not so active for the reaction of NO with H2, but the reconstructed p(3 × 1)Rh-O/Pt-layer/Rh(100) surface is very active for the reaction. Therefore, it was concluded that the chemical reconstruction of the Pt-Rh catalyst makes the active surface which is composed of Rh-O and a Pt layer.  相似文献   

9.
Surface structures of shape‐controlled Pt nanoparticles have been estimated using cyclic voltammetry (CV) and infrared reflection absorption spectroscopy (IRAS). Cubic and cuboctahedral Pt nanoparticles are prepared using a capping polymer. These nanoparticles give CVs similar to those of single crystal electrodes of Pt in sulfuric acid solution. The CV of cubic nanoparticles is similar to that of the Pt(510) [=5(100)–(110)] electrode, while the CV of cuboctahedral nanoparticles is reproduced well with the convolution of Pt(766) [=13(111)–(100)] and Pt(17 1 1) [=9(100)–(111)] electrodes. These results suggest that the planes of the cubic and cuboctahedral nanoparticles are composed of step‐terrace and atomically flat terraces, respectively. Adsorbed carbon monoxide (CO) on the shape‐controlled nanoparticles gives the IR bands that are assigned to on‐top and bridged CO. The band of on‐top CO is deconvoluted to two bands: the higher and the lower frequency bands are assigned to the CO on the plane and the edges of the nanoparticles, respectively. On‐top CO adsorbed on the edges is oxidized at more negative potential than that on the planes. Edge sites of the nanoparticles promote CO oxidation.  相似文献   

10.
The adsorption of hydrogen on Pt(100), (110) and (111) electrodes from 0.5 M H2SO4 has been investigated by measuring potentiodynamic adsorption and desorption spectra. Distinct differences in the adsorption behaviour of H on the various faces of single crystalline Pt are found and the results are compared with those previously reported in the literature. The quality of the single crystal surface was checked by RHEED. In addition, the influence of the substrate crystallographic orientation on the surface oxide formation was studied, where again differences on the three low index faces of Pt are observed.  相似文献   

11.
铂单晶电极表面下不可逆反应动力学(III)   总被引:5,自引:0,他引:5  
在本系列研究论文Ⅰ[1]和Ⅱ[2]报导的结果基础上,进一步发展动力学数据解析方法.通过改变反应体系的温度,首次获得甲酸在Pt(100),Pt(110),Pt(111)电极上直接氧化反应的表观活化Gibbs自由能(△G≠0).在实验选定的标准状态下,即0.0V/SCE、298.15K和1.013×105Pa下,来算得到。还发现传递系数β在实验温度范围(283.15~303.15K)不随温度变化,但随电极表面原子排列结构变化,大小次序与△G≠0的变化一致.  相似文献   

12.
Adsorption of O, O2, and OH on Pt(111), Pt(100), and Pt(110) surfaces was studied using periodic DFT calculations. It was found that generally adsorbate-surface interaction strengths increase with the decrease in surface packing density. On the Pt(111) surface the dissociation of O2 molecule was not predicted, but it was predicted on Pt(100) and Pt(110) surfaces. While the strength of the adsorbate-substrate interaction decreases with the rise in surface coverage by O atoms, in the case of OH adsorption adsorbate layer gets stabilized at higher surface coverage through the hydrogen bonding. In spite of all the mentioned differences, single parameter of surface electronic structure was identified, being useful for the explanation of the adsorption trends at different adsorption sites for O and OH adsorption on Pt surfaces of various crystallographic orientations and also provided a deeper understanding of atomic oxygen adsorption as a function of surface coverage.  相似文献   

13.
The relationship between the binding of the reaction intermediates and oxygen reduction activity in alkaline media was experimentally explored. By introducing Cu into the 2nd surface layer of a Pt(111) single crystal, the surface reactivity was tuned. In both 0.1 m NaOH and 0.1 m KOH, the optimal catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1 m KOH, the alloy catalyst at the peak of the volcano exhibits a maximum activity of 101±8 mA cm?2 at 0.9 V vs. a reversible hydrogen electrode (RHE). This activity constitutes a circa 60‐fold increase over Pt(111) in 0.1 m HClO4.  相似文献   

14.
In the present paper four platinum single crystal electrodes, two basal planes of Pt(111) and Pt(110) and two stepped surfaces of Pt(332) and Pt(331), were prepared and used in the study of electro-oxidation of ethylene glycol (EG). All of these Pt single crystal electrodes belong to the [1 0] zone of crystallography, and exhibit on their surface (111) symmetry sites or certain combinations of terraces of (111) symmetry with steps of (111) symmetry type. It has been found that as a result of a favourable steric matching of surface sites the Pt(110) electrode manifested a higher activity both for EG dissociative adsorption and oxidation than that of the Pt(111) electrode. The stepped surfaces of Pt(332) and Pt(331) operated with certain combinations of characteristics of Pt(111) and Pt(110). The best electrocatalytic properties have been obtained with a Pt(331) electrode, and this is attributed both to the configuration of the atomic arrangement and to the stability of this surface.In summary, the above results show that the performance of a given Pt single crystal electrode in EG oxidation at a potential below 1.0 V may be evaluated by three factors.
1. (1) The ability to resist self-poisoning (AB) which describes the difficulty of EG dissociative adsorption on the electrode surface.
2. (2) The activity for EG oxidation (AC). In considering that the threshold potential for EG oxidation on all electrodes is at 0.3 V and that the self-poisoning is encountered in PGPS, the activity for EG oxidation may be reasonably characterized by the intensity of the peak current acquired in NGPS near 0.6 V, which corresponds to the maximum current of EG oxidation on an activated (non-poisoned) surface of the electrode.
3. (3) The stability of activity during potential cycling (SA) between 0.05 and 1.0 V, which describes the resistance to the decrease of intensity of the EG oxidation current during voltammetric cycling.
For the two basal planes studied, the AB and SA of Pt(111) are higher than those of Pt(110), but its AC is much lower than that of Pt(110). These differences are clearly related to the surface atomic arrangement of the two electrodes. As has been discussed above, the surface of Pt(111) is atomically smooth and stable during voltammetric cycling. The surface of Pt(110) presents, however, atomic steps and is reconstructed under experimental conditions, i.e. certain steric configurations are encountered on the Pt(110) surface. The high AC and the low AB may be assigned to a favourite stereographic matching during EG adsorption and oxidation on Pt(110).The two electrodes with stepped surfaces, Pt(332) and Pt(331), contain different densities of (110) sites, which are formed on the border between terrace and step, as shown in Fig. 8. The AB of these two electrodes has been observed at a moderate range between that of Pt(111) and the AB of Pt(110). With a majority of (111) sites on its surface, the electrode of Pt(332) operates at a relatively higher AC than Pt(111) does, and its SA is not as good as that of Pt(111) but is much better than the SA of a Pt(110) electrode. In all cases the highest AC and SA are obtained with a Pt(331) electrode. It may be seen from the profile of a (331) plane (shown by the cross-section of A-A in Fig. 8) that all atoms on the top of the surface participated in forming (110) sites, and the atom on the step has two functions — one is to form a (110) site with an atom located in the terrace of second layer and the other is to form a (111) site in the terrace of the same layer. It has been mentioned in the above discussions that the Pt(110) electrode keeps a higher AC due to favourite stereographic matching in EG adsorption and oxidation, but its SA is the worst, due to the instability of the surface. The highest AC and SA obtained with Pt(331) may be ascribed not only to the high density of (110) sites existing on the surface, but also to the stabilization of these (110) sites, and moreover, the synergy generated by the atomic arrangement of the Pt(331) surface may also contribute to the performance of the Pt(331) electrode.  相似文献   

15.
Complete dehydrogenation of methane is studied on model Pt catalysts by means of state‐of‐the‐art DFT methods and by a combination of supersonic molecular beams with high‐resolution photoelectron spectroscopy. The DFT results predict that intermediate species like CH3 and CH2 are specially stabilized at sites located at particles edges and corners by an amount of 50–80 kJ mol?1. This stabilization is caused by an enhanced activity of low‐coordinated sites accompanied by their special flexibility to accommodate adsorbates. The kinetics of the complete dehydrogenation of methane is substantially modified according to the reaction energy profiles when switching from Pt(111) extended surfaces to Pt nanoparticles. The CH3 and CH2 formation steps are endothermic on Pt(111) but markedly exothermic on Pt79. An important decrease of the reaction barriers is observed in the latter case with values of approximately 60 kJ mol?1 for first C? H bond scission and 40 kJ mol?1 for methyl decomposition. DFT predictions are experimentally confirmed by methane decomposition on Pt nanoparticles supported on an ordered CeO2 film on Cu(111). It is shown that CH3 generated on the Pt nanoparticles undergoes spontaneous dehydrogenation at 100 K. This is in sharp contrast to previous results on Pt single‐crystal surfaces in which CH3 was stable up to much higher temperatures. This result underlines the critical role of particle edge sites in methane activation and dehydrogenation.  相似文献   

16.
By monitoring the mass fractions of CO(2) (m/z 44) and methylformate (m/z 60, formed from CH(3)OH + HCOOH) with on-line electrochemical mass spectrometry (OLEMS), the selectivity and structure sensitivity of the methanol oxidation pathways were investigated on the basal planes--Pt(111), Pt(110), and Pt(100)--and the stepped Pt electrodes--Pt(554) and Pt(553)--in sulfuric and perchloric acid electrolytes. The maximum reactivity of the MeOH oxidation reaction on Pt(111), Pt(110), and Pt(100) increases in the order Pt(111) < Pt(110) < Pt(100). Mass spectrometry results indicate that the direct oxidation pathway through soluble intermediates plays a pronounced role on Pt(110) and Pt(111), while, on Pt(100), the indirect pathway through adsorbed carbon monoxide is predominant. In 0.5 M H(2)SO(4), introducing steps in the (111) plane increases the total reaction rate, while the relative importance of the direct pathway decreases considerably. In 0.5 M HClO(4), however, introducing steps increases both the total reaction rate and the selectivity toward the direct oxidation pathway. Anion (sulfate) adsorption on (111) leads to a more prominent role of the direct pathway, but, on all the other surfaces, (bi)sulfate seems to block the formation of soluble intermediates. For both electrolytes, increasing the step density results in more methylformate being formed relative to the amount of CO(2) detected, indicating that the [110] steps themselves catalyze the direct oxidation pathway. A detailed reaction scheme for the methanol oxidation mechanism is suggested based on the literature and the results obtained here.  相似文献   

17.
A controlled composition‐based method—that is, the microwave‐assisted ethylene glycol (MEG) method—was successfully developed to prepare bimetallic PtxRu100?x/C nanoparticles (NPs) with different alloy compositions. This study highlights the impact of the variation in alloy composition of PtxRu100?x/C NPs on their alloying extent (structure) and subsequently their catalytic activity towards the methanol oxidation reaction (MOR). The alloying extent of these PtxRu100?x/C NPs has a strong influence on their Pt d‐band vacancy and Pt electroactive surface area (Pt ECSA); this relationship was systematically evaluated by using X‐ray absorption (XAS), scanning electron microscopy (SEM) coupled with energy dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), density functional theory (DFT) calculations, and electrochemical analyses. The MOR activity depends on two effects that act in cooperation, namely, the number of active Pt sites and their activity. Here the number of active Pt sites is associated with the Pt ECSA value, whereas the Pt‐site activity is associated with the alloying extent and Pt d‐band vacancy (electronic) effects. Among the PtxRu100?x/C NPs with various Pt:Ru atomic ratios (x=25, 50, and 75), the Pt75Ru25/C NPs were shown to be superior in MOR activity on account of their favorable alloying extent, Pt d‐band vacancy, and Pt ECSA. This short study brings new insight into probing the synergistic effect on the surface reactivity of the PtxRu100?x/C NPs, and possibly other bimetallic Pt‐based alloy NPs.  相似文献   

18.
Computational study of hydrogen adsorption on (111) surface of transition metals with face centered cubic (fcc) lattice is reported and the results are compared with available experimental and theoretical data. In addition, dissociative adsorption of hydrogen on Pt(111), Pt(100) and Pt(110) is studied in the range of coverage from 0.25 to 1 monolayer. In the case of Pt(111) preferential adsorption site was found to be three-coordinated fcc-hollow site, while on Pt(100) and Pt(110) surface hydrogen settles on two-coordinated bridge and short bridge site, respectively. Hydrogen adsorption energy was found to decrease with the increasing coverage. Structural changes of studied Pt surfaces upon hydrogen adsorption have been compared with the experimental data existing in the literature and good qualitative agreement has been obtained.  相似文献   

19.
同种材料而表面结构不同的电极往往有完全不同的电化学性能.使用在原子水平上表面结构明确的单晶电极不仅有助于对电极表面吸脱附过程、电场作用下表面结构重组、双电层微观结构、分子水平上的反应机理等基础理论进行深入研究,且对高选择性、高效电催化剂的研制也有指导意义.单晶电化学研究的基础就是制备定向不同的单晶电极.本文建立了金属单晶电极制备方法,并报道了Cu2+在Pt单晶电极上UPD(欠电位沉积)过程的研究结果.  相似文献   

20.
Structural effects on the rates of formic acid oxidation have been studied on Pd(111), Pd(100), Pd(110), and Pd(S)-[n(100) x (111)] (n = 2-9) electrodes in 0.1 M HClO4 containing 0.1 M formic acid with use of voltammetry. On the low index planes of Pd, the maximum current density of formic acid oxidation (jP) increases in the positive scan as follows: Pd(110) < Pd(111) < Pd(100). This order differs from that on the low index planes of Pt: Pt(111) < Pt(100) < Pt(110). Pd(S)-[n(100) x (111)] electrodes with terrace atomic rows n > or = 3 have almost the same jP as Pd(100), except Pd(911) n = 5. The value of jP on Pd(911) n = 5 is 20% higher than those of the other surfaces. Pd(311) n = 2, of which the first layer is composed of only step atoms, has the lowest jP in the Pd(S)-[n(100) x (111)] series. The adsorption geometry of the reaction intermediate (formate ion) is optimized by using density functional theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号