首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The oxidative kinetic resolution of secondary alcohols has been accomplished using 1:1 complexes of PdCl(2) and N-heterocyclic carbenes. In these reactions, both achiral and chiral carbene ligands are used in conjunction with the chiral base (-)-sparteine. A general synthesis of 1:1 PdCl(2)-carbene complexes has been developed and is amenable to a wide range of carbene ligands. The potential of these complexes in aerobic oxidations is highlighted by the use of a chiral Pd(II) complex and the chiral base (-)-sparteine to enhance the kinetic resolution of a racemic alcohol. [reaction--see text]  相似文献   

2.
The five binuclear nickel(II) complexes have been synthesized by the Schiff base condensation of 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclo-tetradecane (PC) with appropriate aliphatic diamines and nickel(II) perchlorate. All the five complexes were characterized by elemental and spectral analysis. The electronic spectra of the complexes show three d-d transition in the range of 550-1055 nm due to 3A2g→3T2g(F), 3A2g→3T1g(F) and 3A2g→3T1g(P). These spin allowed electronic transitions are characteristic of an octahedral Ni2+ center. Electrochemical studies of the complexes show two irreversible one electron reduction waves at cathodic region. The reduction potential of the complexes shifts towards anodically upon increasing the chain length of the macrocyclic ring. All the nickel(II) complexes show two irreversible one electron oxidation waves at anodic region. The oxidation potential of the complexes shift towards anodically upon increasing the chain length of the macrocyclic ring. The catalytic activities of the complexes were observed to be increase with increase the macrocyclic ring size. The observed rate constant values for the catalytic hydrolysis of 4-nitrophenyl phosphate are in the range of 5.85×10(-3) to 9.14×10(-3) min(-1). All the complexes were screened for antimicrobial activity.  相似文献   

3.
4.
A group of chiral, dibasic, biaryl-bridged amido proligands containing peripheral methoxyphenyl (anisole) ligation are developed for the synthesis of new amide complexes of yttrium and lanthanum. A potentially tetradentate bis(amidoanisole) system gives, on reaction with [Y[N(SiMe(2)H)(2)](3)(THF)] a crystallographically-characterised bis complex [Y(H)] presumably as a result of low steric demand, since a more bulky version gives the target [Y[N(SiMe(2)H)(2)](THF)]. The molecular structure of the latter reveals a similar cis-alpha structure to our recently reported Schiff-base analogue. Variable-temperature NMR studies are consistent with low rigidity in the molecular structure. A potentially tridentate, amidoanisolyl/amido proligand gives complexes [M[N(SiMe(2)H)(2)](THF)(n)](M = Y, n= 1; M = La, n= 2). Chiral non-racemic versions of the above complexes were tested in the hydroamination/cyclisation of 2,2'-dimethylaminopentane to the corresponding pyrrolidine. Activities were relatively low compared to recently reported examples, and ee values were in the range 20-40% despite the well-expressed chirality of the catalysts.  相似文献   

5.
[reaction: see text] A study concerning the synthesis of new phosphine gold(I) complexes using the bis(trifluoromethanesulfonyl)imidate moiety as a weakly coordinating counter-anion is described. These new air-stable complexes are more convenient to prepare, store, and handle and are exceedingly active for the catalysis of a wide range of enynes cycloisomerizations.  相似文献   

6.
A one-pot synthesis of a wide range of bidentate, alkoxide-N-heterocyclic carbene ligands provides new lithium alkoxy-carbenes and a range of covalently bound organometallic Cu(II) carbene complexes, which are catalytically active, in some cases enantioselectively, for conjugate addition reactions.  相似文献   

7.
A series of new mono and binuclear copper (II) complexes [Cul]X(2)and [Cu(2)lX(2)] where 1 = L(1), L(2) and L(3) are the macrocyclic ligands. In mononuclear complexes the geometry of Cu(II) ion is distorted squareplanar and in binuclear complexes the geometry of Cu(II) is tetragonal. The synthesized complexes were characterized by spectroscopic (IR,UV-vis and ESR) techniques. Electrochemical studies of the complexes reveals that all the mononuclear Cu(II) complexes show a single quasireversible one-electron transfer reduction wave (E(pc) = -0.76 to -0.84V) and the binuclear complexes show two quasireversible one electron transfer reduction waves (E(pc)(1) = -0.86 to -1.01V, E(pc)(2) = -1.11 to -1.43V) in cathodic region. The ESR spectra of mononuclear complexes show four lines with nuclear hyperfine splittings with the observed g(11) values in the ranges 2.20-2.28, g( perpendicular) = 2.01-2.06 and A(11) = 125-273. The binuclear complexes show a broad ESR spectra with g = 2.10-2.11. The room temperature magnetic moment values for the mononuclear complexes are in the range [mu(eff) = 1.70-1.72BM] and for the binuclear complexes the range is [mu(eff) = 1.46-1.59BM].  相似文献   

8.
Kinetic analysis of the thermal destruction of complexes of zinc(II)tetra-tert-butylphthalocyanine Zn(t-Bu)4Pc with organic solvent molecules has been carried out. For ligands having high ionization potentials, long refluxing of solution is required for preparing biligand complexes. For molecular ligands whose ionization potentials do not exceed 9.2 eV, the composition of complexes with Zn(t-Bu)4Pc is independent of the preparation parameters. The destruction of the Zn(t-Bu)4Pc complexes with n-propylamine, diethylaniline, piperidine (1: 1, cold synthesis), diethylamine, morpholine, quinoline, or cyclopentanone (1: 2, hot synthesis; 1: 2, cold synthesis) obeys fist-order equations; for complexes with pyridine, 1,4-dioxane, DMF, cyclopentanone (1: 1, hot synthesis), 3-dimethylaminopropionitrile, or piperidine (1: 2, hot synthesis), destruction obeys second-order equations. The activation energies of thermal destruction for the first group of molecular complexes fall in the range from 89 to 370 kJ/mol; the rate-controlling stage is nucleation and growth. For the second group, the activation energies fall in the range from 160 to 640 kJ/mol; the rate-controlling stage is a chemical reaction.  相似文献   

9.
A family of heteroleptic (C;N)2Ir(acac) and homoleptic fac-Ir(C;N)3 complexes have been synthesized and their photophysical properties studied (where C;N = a substituted 2-phenylpyridine and acac = acetylacetonate). The neutral Delta and Lambda complexes were separated with greater than 95% enantiomeric purity by chiral supercritical fluid chromatography, and the solution circular dichroism and circularly polarized luminescence spectra for each of the enantio-enriched iridium complexes were obtained. The experimentally measured emission dissymmetries (gem) for this series compared well with predicted values provided by time-dependent density functional theory calculations. The discovered trend further showed a correlation with the dissymmetries of ionic, enantiopure hemicage compounds of Ru(II) and Zn(II), thus demonstrating the applicability of the model for predicting emission dissymmetry values across a wide range of complexes.  相似文献   

10.
Photophysical properties for a number ruthenium(II) and osmium(II) bipyridyl complexes are reported in dilute acetonitrile solution. The lifetimes of the excited metal to ligand charge transfer states (MLCT) of the osmium complexes are shorter than for the ruthenium complexes. Rate constants, kq, for quenching of the lowest excited metal to ligand charge transfer states by molecular oxygen are found to be in the range (1.1-7.7) x 10(9) dm3 mol(-1) s(-1). Efficiencies of singlet oxygen production, fDeltaT, following oxygen quenching of the lowest excited states of these ruthenium and osmium complexes are in the range of 0.10-0.72, lower values being associated with those compounds having lower oxidation potentials. The rate constants for quenching of the excited MLCT states, kq, are found to be generally higher for osmium complexes than for ruthenium complexes. Overall quenching rate constants, kq were found to give an inverse correlation with the energy of the excited state being quenched, and also to correlate with the oxidation potentials of the complexes. However, when the contribution of quenching due exclusively to energy transfer to produce singlet oxygen, kq1, is considered, its dependence on the energy of the excited states is more complex. Rate constants for quenching due to energy dissipation of the excited MLCT states without energy transfer, kq3, were found to show a clear correlation with the oxidation potential of the complexes. Factors affecting both the mechanism of oxygen quenching of the excited states and the efficiency of singlet oxygen generation following this quenching are discussed. These factors include the oxidation potential, the energy of the lowest excited state of the complexes and spin-orbit coupling constant of the central metal.  相似文献   

11.
A convenient, regioselective, and general synthetic method for producing highly substituted o-phenol-containing polycycles from Fischer (alkenylcyclobutenyl)carbene complexes has been described. The starting complexes have been synthesized by means of the [2 + 2] cycloaddition reaction of (alkenylethynyl)carbene complexes and a range of enol ethers, and in most cases, they have proven to be stable at room temperature and therefore isolable. The key step of the synthesis consists of the thermal benzannulation reaction of these novel pentacarbonyl dienyl Fischer complexes, which is an unprecedented transformation for these kinds of complexes. The unexpected behavior of (alkenylcyclobutenyl)carbene complexes has been rationalized in terms of their geometries.  相似文献   

12.
The synthesis and mesomorphic properties of a homologous series of N-(2-hydroxy-4-n-alkoxybenzylidene)-4'-n-decylphenylanilines and their platinum(II) and oxovanadium(IV) complexes are reported. All the ligands and their metal chelates exhibit enantiotropic mesophases, predominantly smectic A and smectic C phases. The transition temperatures and enthalpies have been determined for most of the compounds. The platinum(II) complexes have higher melting points and mesophase thermal stabilities. However, the oxovanadium(IV) complexes have a wider thermal range for the mesophase. Both platinum(II) and oxovanadium(IV) complexes containing only a chain on the biphenyl moiety exhibit a nematic phase.  相似文献   

13.
Vinylalkylidene transition metal complexes have been extensively used as ‘multitalent tools’ in organic synthesis, covering a broad field of applications. The vinylalkylidene ligands can be monodentate; alternatively they can adopt a bridging coordination mode in complexes with two adjacent metal atoms. As for other unsaturated organic ligands which can bond in both mono- and di-nuclear modes, the bridging coordination can give rise to new and different chemical properties from those found when the ligand is bound to a single metal centre. Likewise, the synthetic routes to bridging vinylalkylidene complexes offer a broader range of possibilities compared to those used to make mononuclear vinylalkylidenes. In spite of the fact that bridging vinylalkylidene complexes have been known for about 40 years, their synthetic potential as C3 activated fragments has so far been under-exploited. Comparison with other C3 bridged ligands (allenyls and allyls) indicates that vinylalkylidene ligands are reactive and versatile species. This review article gives an overview of the chemistry of bridging vinylalkylidene complexes to focus attention on their potential as synthetic tools.  相似文献   

14.
Five binuclear nickel(II) complexes have been prepared by simple Schiff base condensation of the compound 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane (L) with appropriate aliphatic or aromatic diamine, nickel(II) perchlorate and triethylamine. All the complexes were characterized by elemental and spectral analysis. Positive ion FAB mass spectra show the presence of dinickel core in the complexes. The electronic spectra of the complexes show red shift in the d–d transition. Electrochemical studies of the complexes show two irreversible one electron reduction processes in the range of 0 to −1.4 V. The reduction potential of the complexes shifts towards anodically upon increasing chain length of the macrocyclic ring. All the nickel(II) complexes show two irreversible one electron oxidation waves in the range 0.4–1.6 V. The observed rate constant values for catalysis of the hydrolysis of 4-nitrophenyl phosphate are in the range of 1.36 × 10−2–9.14 × 10−2 min−1. The rate constant values for the complexes containing aliphatic diimines are found to be higher than the complexes containing aromatic diimines. Spectral, electrochemical and catalytic studies of the complexes were compared on the basis of increasing chain length of the imine compartment. All the complexes show higher antimicrobial activity than the ligand and metal salt.  相似文献   

15.
《Analytical letters》2012,45(10):1825-1852
Abstract

A general view of the electroanalytical applications of metal‐salen complexes is discussed in this review. The family of Schiff bases derived from ethylenediamine and ortho‐phenolic aldehydes (N,N′‐ethylenebis(salicylideneiminato)—salen) and their complexes of various transition metals, such as Al, Ce, Co, Cu, Cr, Fe, Ga, Hg, Mn, Mo, Ni, and V have been used in many fields of chemical research for a wide range of applications such as catalysts for the oxygenation of organic molecules, epoxidation of alkenes, oxidation of hydrocarbons and many other catalyzed reactions; as electrocatalyst for novel sensors development; and mimicking the catalytic functions of enzymes. A brief history of the synthesis and reactivity of metal‐salen complexes will be presented. The potentialities and possibilities of metal‐Salen complexes modified electrodes in the development of electrochemical sensors as well as other types of sensors, their construction and methods of fabrication, and the potential application of these modified electrodes will be illustrated and discussed.  相似文献   

16.
A set of new aluminium complexes of norfloxacin (NOR) and ciprofloxacin (CIP) that show an improvement in their pharmaceutical properties were studied using solution and solid-state nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. The complexes synthesized with two different methods were compared. One of these methods will allow formulation of the compounds at production scale. High-resolution (13)C spectra were obtained with the cross-polarization and magic angle spinning (CP-MAS) experiment. These spectra were assigned by comparing them with the solution data of the pure drug and by using a quaternary carbon edition technique. The carbon relaxation times in the rotating frame, T(1rhoC), were measured for all the complexes. A two-exponential decay evidences that the complexes are nonhomogeneous. The short T(1rhoC) values are in the range 320-1100 micros and the long values in the range 1.8-7 ms. (27)Al MAS NMR spectra revealed an octahedral coordination between the aluminium ion and oxygens of the pure drug, supporting a 3:1 ligand:metal stoichiometry in both CIP and NOR complexes. The stretching and deformation modes of carboxylic acid and carboxylate and keto groups were analyzed by IR. This technique shows that the same modes are present in the aluminium complexes obtained by the two methods and that the coordination of the fluoroquinolone to aluminium occurs through the 4-keto and 3-carboxylic groups.  相似文献   

17.
The potential of electrospray ionization (ESI) mass spectrometry (MS) to detect non-covalent protein complexes has been demonstrated repeatedly. However, questions about correlation of the solution and gas-phase structures of these complexes still produce vigorous scientific discussion. Here, we demonstrate the evaluation of the gas-phase binding of non-covalent protein complexes formed between bovine pancreatic trypsin inhibitor (BPTI) and its target enzymes over a wide range of dissociation constants. Non-covalent protein complexes were detected by ESI-MS. The abundance of the complex ions in the mass spectra is less than expected from the values of the dissociation constants of the complexes in solution. Collisionally activated dissociation (CAD) tandem mass spectrometry (MS/MS) and a collision model for ion activation were used to evaluate the binding of non-covalent complexes in the gas phase. The internal energy required to induce dissociation was calculated for three collision gases (Ne, Ar, Kr) over a wide range of collision gas pressures and energies using an electrospray ionization source. The order of binding energies of the gas-phase ions for non-covalent protein complexes formed by the ESI source and assessed using CAD-MS/MS appears to differ from that of the solution complexes. The implication is that solution structure of these complexes was not preserved in the gas phase.  相似文献   

18.
Enantiopure TpMo(CO)2(pyridinyl) complexes were prepared using an efficient and scalable enzymatic kinetic resolution of the precursor to the molybdenum complex. A single TpMo(CO)2(pyridinyl) complex can function as a chiral scaffold for the enantiocontrolled synthesis of either 2,3,6-cis- or 2,6-cis-3-trans-trisubstituted piperidines. The synthetic potential of this methodology was demonstrated by a total synthesis of (-)-indolizidine 209B.  相似文献   

19.
The synthesis of base‐stabilized boryl and borylene complexes is reported. An N‐heterocyclic carbene (NHC)‐stabilized iron–dihydroboryl complex was prepared by two different routes including methane liberation and salt elimination. A range of base‐stabilized iron–dichloroboryl complexes was prepared by addition of Lewis bases to boryl complexes. Base‐stabilized, cationic monochloroborylene complexes were synthesized from these boryl complexes by halide abstraction by using weakly coordinating anions.  相似文献   

20.
The electrochemical behavior of [trans-RuCl(4)L(DMSO)](-) (A) and [trans-RuCl(4)L(2)](-) (B) [L = imidazole (Him), 1,2,4-triazole (Htrz), and indazole (Hind)] complexes has been studied in DMF, DMSO, and aqueous media by cyclic voltammetry and controlled potential electrolysis. They exhibit one single-electron Ru(III)/Ru(II) reduction involving, at a sufficiently long time scale, metal dechlorination on solvolysis, as well as, in organic media, one single-electron reversible Ru(III)/Ru(IV) oxidation. The redox potential values are interpreted on the basis of the Lever's parametrization method, and particular forms of this linear expression (that relates the redox potential with the ligand E(L) parameter) are proposed, for the first time, for negatively (1-) charged complexes with the Ru(III/II) redox couple center in aqueous phosphate buffer (pH 7) medium and for complexes with the Ru(III/IV) couple in organic media. The E(L) parameter was estimated for indazole showing that this ligand behaves as a weaker net electron donor than imidazole or triazole. The kinetics of the reductively induced stepwise replacement of chloride by DMF were studied by digital simulation of the cyclic voltammograms, and the obtained rate constants were shown to increase with the net electron donor character (decrease of E(L)) of the neutral ligands (DMSO < indazole < triazole < imidazole) and with the basicity of the ligated azole, factors that destabilize the Ru(II) relative to the Ru(III) form of the complexes. The synthesis and characterization of some novel complexes of the A and B series are also reported, including the X-ray structural analyses of (Ph(3)PCH(2)Ph)[trans-RuCl(4)(Htrz)(DMSO)], [(Ph(3)P)(2)N][trans-RuCl(4)(Htrz)(DMSO)], (H(2)ind)[trans-RuCl(4)(Hind)(DMSO)], and [(Hind)(2)H][trans-RuCl(4)(Hind)(2)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号