首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
Six new complexes of tin(IV) halides with phosphorus‐containing ligands have been fully characterized by single‐crystal X‐ray diffraction at low temperature. Three of the compounds, derived from the diphosphanes bis‐(diphenylphosphino)methane or bis‐(dicyclohexylphosphino)methane, have a novel zwitterionic structure, with five Cl ligands and one unidentate phosphorus‐containing ligand on tin, together with a proton on the second phosphorus atom of the potentially bidentate ligand; these are Cl5SnP(Ph2)CH2PPh2H+ ( 1 ), Cl5SnOP(Ph2)CH2‐PPh2H+ ( 2 ), and Cl5SnOP(cy2)CH2Pcy2H+ ( 3 ). The other three complexes have a bidentate donor attached to the SnX4 moiety; they comprise Cl4SnOP(Ph2)‐(CH2)2PPh2O ( 4 ), a derivative of bis‐(diphenylphosphino)ethane dioxide, I4SnOP(Ph2)CH2PPh2O ( 5 ), a similar derivative of bis‐(diphenylphosphino)‐methane dioxide, and the very unusual Br4SnAs‐(Ph2)(CH2)2PPh2O ( 6 ), with coordination to tin by As and O. Since the starting material for the last compound was Ph2As(CH2)2PPh2, this result illustrates well the more facile oxidation of P(III) than As(III). © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:136–143, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20525  相似文献   

2.
Reaction of alkali metal halides (MX) with methylenediphosphine oxides and various related compounds in nonaqueous solutions leads to the formation of complex compounds. The compositions, properties, and stabilities of these compounds, which have been studied in detail in acetonitrile, are determined by the nature of the cations and anions of the alkali metal halides. Formation of neutral complexes with the composition [MX · L] and cationic complexes with the composition [ML]+ has been established. The most characteristic representative of complexes of the first type is [NaI · L]; in the complexes studied, L=R2P(O)CH2P(O)R2 (R=Bu, BuO, or Ph), Ph2P(O)CH2P(O) (OC2H5)CH2P(O)Ph2 and (p-OCH3C6H4)2P(O)CH2P(O)(C6H4CF3-p)2. Compound [LiL]+ is characteristic of complexes of the second type; the compounds containing Ph3P(O), Ph2P(O)CH2P(O)Ph2, and Ph2P(O)CH2P(O)(OC2H5)CH2P(O)Ph2 as ligands have been studied. Stability constants of the complexes [NaI · L] and [LiL]+ have been determined by measuring the dependence of the electrical conductivity of solutions of the alkali metal halides in acetonitrile on the concentration of the ligands. The complex-forming power of phosphine oxides increases with increase in the number of P=O groups. Stabilities of the complexes [NaI · L] with ligands with identical structure decrease with increase in the electronegativity of the substituents on the phosphorus atoms.  相似文献   

3.
The extraction ability and selectivity of a series of phosphoryl ketones Ph2P(O)CH2C(O)Me, and Ph2P(O)CRR’CH2C(O)Me (R = H, Me; R’ = H, Me, n-C5H11, Ph, 2-thienyl, 2-furyl) towards trivalent lanthanides (LaIII, NdIII, HoIII, YbIII) and actinides (UVI, ThIV) were studied. The efficiency and selectivity of the new ligands in the extraction of f-elements from nitric acid solutions into chloroform were compared to those of model phosphine oxide Ph2P(O)Bu and known extractants: tributyl phosphate (BuO)3P(O), trioctylphosphine oxide (C8H17)3P(O), and carbamoylmethyl phosphine oxide Ph2P(O)CH2C(O)NBu2.  相似文献   

4.
Dimeric chlorobridge complex [Rh(CO)2Cl]2 reacts with two equivalents of a series of unsymmetrical phosphine–phosphine monoselenide ligands, Ph2P(CH2)nP(Se)Ph2 {n = 1( a ), 2( b ), 3( c ), 4( d )}to form chelate complex [Rh(CO)Cl(P∩Se)] ( 1a ) {P∩Se = η2‐(P,Se) coordinated} and non‐chelate complexes [Rh(CO)2Cl(P~Se)] ( 1b–d ) {P~Se = η1‐(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to produce Rh(III) complexes of the type [Rh(COR)ClX(P∩Se)] {where R = ? C2H5 ( 2a ), X = I; R = ? CH2C6H5 ( 3a ), X = Cl}, [Rh(CO)ClI2(P∩Se)] ( 4a ), [Rh(CO)(COCH3)ClI(P~Se)] ( 5b–d ), [Rh(CO)(COH5)ClI‐(P~Se)] ( 6b–d ), [Rh(CO)(COCH2C6H5)Cl2(P~Se)] ( 7b–d ) and [Rh(CO)ClI2(P~Se)] ( 8b–d ). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH3I and C2H5I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d . The CH3I reacts with the different complexes at a rate 10–100 times faster than the C2H5I. The catalytic activity of complexes 1b–d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well‐known commercial species [Rh(CO)2I2]?. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
An unprecedented one-pot fully electrochemically driven Wittig olefination reaction system without employing a chemical reductant or sacrificial electrode material to regenerate triphenylphosphine (TPP) from triphenylphosphine oxide (TPPO) and base-free in situ formation of Wittig ylides, is reported. Starting from TPPO, the initial step of the phosphoryl P=O bond activation proceeds through alkylation with RX (R=Me, Et; X=OSO2CF3 (OTf)), affording the corresponding [Ph3POR]+X salts which undergo efficient electroreduction to TPP in the presence of a substoichiometric amount of the Sc(OTf)3 Lewis acid on a Ag-electrode. Subsequent alkylation of TPP affords Ph3PR+ which enables a facile and efficient electrochemical in situ formation of the corresponding Wittig ylide under base-free condition and their direct use for the olefination of various carbonyl compounds. The mechanism and, in particular, the intriguing role of Sc3+ as mediator in the TPPO electroreduction been uncovered by density functional theory calculations.  相似文献   

6.
Electric discharge reactions in the systems PH3 + H2O, PH3 + H2O + NH3 and PH3 + H2O + NH3 + CH4 have been studied. In the system PH3 + H2O, they produce polyphosphines (insoluble in water) and hypophosphorous, phosphorous and orthophosphoric acids. In the system PH3 + H2O + NH3, besides the above products, hypophosphate, pyrophosphate, polyphosphates and possibly polyhyphosphates are also present. In the system PH3 + H2O + NH3 + CH4, besides all the above inorganic P compounds, organic phosphorus derivatives such as aminoalkyl phosphates and aminoalkanephosphonates are also formed, as well as other non-phosphorus containing organic products (amino acids, ethanolamine, etc.). The presence of phosphine (or its transformation products), seems to promote condensation reactions in this system since the ratio of amino acids found after hydrolysis (in 6N HCl) to amino acids found before hydrolysis is greater in this system. than in the system (CH4+ H2O+ NH3)iiot containing phosphine.  相似文献   

7.
Abstract

The reactions of the starting complex, [Fe2(CO)6{μ-SCH2CH (CH2CH3)S}] (1), with the phosphine ligands tris(4-methylphenyl)phosphine, diphenyl-2-pyridylphosphine, tris(4-fluorophenyl)phosphine, 2-(diphenylphosphino)benzaldehyde, or benzyldiphenylphosphine in the presence of the decarbonylating agent Me3NO·2H2O yielded the corresponding phosphine-substituted diiron butane-1,2-dithiolate complexes [Fe2(CO)5(L){μ-SCH2CH(CH2CH3)S}] (L?=?P(4-C6H4CH3)3, 2; Ph2P(2-C5H4N), 3; P(4-C6H4F)3, 4; Ph2P(2-C6H4CHO), 5; Ph2PCH2Ph, 6) in 75%–87% yields. The complexes have been characterized by elemental analysis, IR, 1H, and 31P{1H} NMR spectroscopy, as well as by single-crystal X-ray diffraction analysis. Moreover, the electrochemistry of 24 was studied by cyclic voltammetry, suggesting that they can catalyze the reduction of protons to H2 in the presence of HOAc.  相似文献   

8.
Three macrobicyclic octamines 1–3 and the macrotricyclic hexadecamine 14 have been synthesized. The octamines 1–3 bind anionic substrates when protonated. The stability constants of the complexes between the protonated forms of the macrobicyclic polyamines and halide anions have been determined by pH-metric measurements. The stability constants in H2O are very high; 1 in its hexaprotonated form binds F with high selectivity (selectivity F/Cl > 108), while 3 exhibits strong stability constants for both F and Cl. Three X-ray structures have been obtained, one where F is held inside the cavity of 1 · 6H+, one where Cl is included in 3 · 6H+, and 3 · 6H+ where the cavity is empty.  相似文献   

9.
Solid‐state NMR spectroscopy of selected phosphine oxides adsorbed on silica surfaces establishes the surface mobilities, even of phosphine oxides with high melting points. Crystal structures of the adducts Ph3PO ? HOSiPh3 and Cy3PO ? H2O indicate that the interactions with silica involve hydrogen bonding of the P?O group to adsorbed water and surface silanol groups.  相似文献   

10.
Abstract

Reaction of [Co(CNC6H3Et2-2,6)5]BF4 with bidentate phosphines leads to monosubstituted Co(I) complexes, [Co(CNC6H3Et2-2,6)4(L-L)]BF4, where L-L = Ph2P(CH2)n PPh2, n = 1-4,6; Ph2PCH2-CH2AsPh2, Ph2PC6H4PPh2-p, Ph2PCH[dbnd]CHPPh2-trans. Reaction conditions are such that disubstitution would be possible, but bidentate bridging to form bimetallic complexes is not favoured. Comparison of v([sbnd]N°C) IR, electronic spectra, and molar conductivities with values for [Co(CNC6H3Et2-2,6)4L]X, where X = ClO4, BF4; L = monodentate triarylphosphine; indicates that these new complexes must also be five-coordinate Co(I) complexes, in which the potentially bidentate phosphine ligands are coordinated through only one P atom. Structures are approximately trigonal bipyramidal in solution and the solid state, with the phosphine ligand occupying an axial position.  相似文献   

11.
Phosphine (PH3) is a natural constituent in phosphorus (P) chemical cycles. The discovery of phosphine will shed new light on the mechanisms of P supplement and biogeochemical cycles. Since phosphine is converted to phosphate after complex oxidation via hypophosphite and phosphite, if it were present in the water column, understanding its production and emission could enhance our understanding of P speciation.

Assuming that phosphine in the gas phase is an ideal gas and at equilibrium between water and gas interface, phosphine in water solution can be quantified from the equilibrated concentration in gas phase using the Henry's Law. Application of this approach to Lake Taihu, China, phosphine in unfiltered and filtered water samples (0.45 μm) was analysed. Results showed that phosphine was universally present in Lake Taihu water. Phosphine concentration in unfiltered water ranged from 0.16 to 1.11 pg L?1, and was much less (0.01 to 0.04 pg L?1) in filtered samples. Over 90% of phosphine was adsorbed onto or incorporated into suspended materials with <10% dissolved in the water. Higher phosphine concentrations could be observed in warm seasons. Positive relationships were found between PH3 and TP (average R 2 = 0.59 ± 0.22) and TSP (average R 2 = 0.37 ± 0.13).  相似文献   

12.
Abstract

A number of phosphine selenide ligands and their gold(I) complexes of general formula R3P?Se?Au?X (where X is Cl?, Br? and CN? and R = phenyl, cyclohexyl and tolyl) were prepared. The complexes were characterized by elemental analysis, IR and 31P NMR spectroscopic methods. In the IR spectra of all complexes a decrease in frequency of P?Se bond upon coordination was observed, indicating a decrease in P?Se bond order. 31P NMR showed that the electronegativity of the substituents is the most important factor determining the 31P NMR chemical shift. It was observed that phosphorus resonance is more downfield in alkyl substituted phosphine selenides, as compared to the aryl substituted ones. Ligand disproportionation in the complex Cy3P?SeAuCN in solution to form [Au(CN)2]? and [(Cy3P?Se)2Au]+ was investigated by 13C and 15N NMR spectroscopy.  相似文献   

13.
The monoclinic cell of di­cyclo­hexyl­ammonium 2,4‐di­chloro­phenoxy­acetate contains four C12H24N+·C5H8Cl2O3? ion pairs. The ammonium N atom is hydrogen bonded to the oxy­gen ends of two carboxyl groups to form a 12‐membered O—C—O?HNH?O—C—O?HNH ring. In (2,4‐di­chloro­phenoxy­lacetato)­bis­(tri­phenyl­phosphine)silver(I), [Ag(C8H5Cl2O3)(C18H15P)2], the carboxyl CO2 unit chelates to the Ag atom in an anisobidentate manner [Ag—O = 2.436 (2) and 2.517 (2) Å]; the Ag atom shows distorted tetrahedral geometry.  相似文献   

14.
The reactions of dimeric complex [Rh(CO)2Cl]2 with hemilabile ether‐phosphine ligands Ph2P(CH2) nOR [n = 1, R = CH3 (a); n = 2, R = C2H5 (b)] yield cis‐[Rh(CO)2Cl(P ~ O)] (1) [P ~ O = η 1‐(P) coordinated]. Halide abstraction reactions of 1 with AgClO4 produce cis‐[Rh(CO)2(P ∩ O)]ClO4 (2) [P ∩ O = η 2‐(P,O)chelated]. Oxidative addition reactions of 1 with CH3I and I2 give rhodium(III) complexes [Rh(CO)(COCH3)ClI(P ∩ O)] (3) and [Rh(CO)ClI2(P ∩ O)] (4) respectively. The complexes have been characterized by elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The catalytic activity of 1 for carbonylation of methanol is higher than that of the well‐known [Rh(CO)2I2]? species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
In the two title complexes, (C24H20P)[Au(C3S5)2]·C3H6O, (I), and (C20H20P)[Au(C3S5)2], (II), the AuIII atoms exhibit square‐planar coordinations involving four S atoms from two 2‐thioxo‐1,3‐dithiole‐4,5‐dithiolate (dmit) ligands. The Au—S bond lengths, ranging from 2.3057 (8) to 2.3233 (7) Å in (I) and from 2.3119 (8) to 2.3291 (10) Å in (II), are slightly smaller than the sum of the single‐bond covalent radii. In (I), there are two halves of independent Ph4P+ cations, in which the two P atoms lie on twofold rotation axis sites. The Ph4P+ cations and [Au(C3S5)2] anions are interspersed as columns in the packing. Layers composed of Ph4P+ and [Au(C3S5)2] are separated by layers of acetone molecules. In (II), the [Au(C3S5)2] anions and EtPh3P+ counter‐cations form a layered arrangement, and the [Au(C3S5)2] anions form discrete pairs with a long intermolecular Au...S interaction for each Au atom in the crystal structure.  相似文献   

16.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

17.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

18.
The reactivity of the hydrolysis product of hexaphenylcarbodiphosphorane, PPh3CHP(O)Ph2, towards different soft Lewis acids, such as CuI and Ag[BF4] are reported. While CuI exclusively binds at the ylidic carbon atom, reaction of the silver cation in CH2Cl2 leads to proton abstraction from the solvent to give the cation [PPh3CH2P(O)Ph2]+. Surprisingly, Ag+ replaces the methyl group of [PPh3CHMeP(O)Ph2]+ to produce a dimeric complex, in which Ag+ is coordinated to C and O forming an eight membered ring. The compounds were characterized by spectroscopic methods and X‐ray diffraction.  相似文献   

19.
The use of a bis(diphenyl)phosphine functionalized β-diketiminato ligand, [HC{(CH3)C}2{(ortho-[P(C6H5)2]2C6H4)N}2] (PNac), as a support for germanium(II) and tin(II) chloride and phosphaketene compounds, is described. The conformational flexibility and hemilability of this unique ligand provide a versatile coordination environment that can accommodate the electronic needs of the ligated elements. For example, chloride abstraction from [(PNac)ECl] (E=Ge, Sn) affords the cationic germyliumylidene and stannyliumylidene species [(PNac)E]+ in which the pendant phosphine arms associate more strongly with the Lewis acidic main group element centers, providing further electronic stabilization. In a similar fashion, chemical decarbonylation of the germanium phosphaketene [(PNac)Ge(PCO)] with tris(pentafluorophenyl)borane affords a “push–pull” stabilized phosphinidene in which one of the phosphine groups of the ligand backbone associates with the low valent phosphinidene center.  相似文献   

20.
Abstract

Reactions of a series of binuclear, phosphine bridged late transition metal complexes, Pd2Cl2(dppm)2, Pd2Cl2(dmpm)2, Pd2Cl2(Ph2Ppy)2, Pt2Cl2(dppm)2, and Ag2Br2(dppm)2, with Me3SiX (X = Br, I), Me3GeBr and Me3SnBr were examined by 31P NMR spectroscopy. Rapid exchange of Pd-Cl, Pt-Cl and Ag-Br bonds for Pd-X, Pt-X (X = Br, I) and Ag-I bonds was observed to be independent of the nature of the phosphine ligand, the nature of the metal center or the group IV element. Differences in Lewis acidity of the transition metal center as a function of the ligands and the identity of the transition metal and differences in the basicity of the Me3EBr ligands are proposed to account for the failure to detect intermediates in these reactions similar to those reported for reactions between Pd2Cl2(dppm)2 and Me3SiX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号