首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The polyacidic character of polyoxometalate(POM) clusters endows high ionic conductivity, making these clusters good candidates for solar and fuel cells. Covalent bonding of clusters to polymer chains creates poly(POM)s that are polyelectrolytes with both cluster functions and polymer performance. Thus, solution-processable poly(POM)s are expected to be used as key materials in advanced devices. Further understanding of poly(POM)s will optimize the preparation process and improve device performance. Herein, we report a study of the first linear poly(POM)s by directly visualizing the chains using scanning transmission electron microscopy. Compared with traditional polymers, individual clusters of poly(POM)s can be directly visualized because of the resistance to electron-beam damage and the high contrast of the tungsten POM pendants. Thus, cluster aggregates with diverse shapes were observed. Counting the number of clusters in the aggregates allowed the degree of polymerization and molecular weight distribution to be determined, and studying the aggregate shapes revealed the presence of a curved semirigid chain in solution. Further study of shape diversity revealed that strong interactions between clusters determine the diverse chain shapes formed during solution processing. Fundamental insight is critical to understanding the formation of poly(POM) films from solutions as key functional materials, especially for fuel and solar cells.  相似文献   

2.
Polyoxometalates possess many useful properties for electrochemical catalysis. These molecule-size clusters can be assembled into thin films through the layer-by-layer method. In this study, we determined a cluster concentration range within which layer-by-layer (LbL) films have been successfully fabricated. We also find the influence of salt added to the deposition solutions. In an attempt to understand the self-assembly process at the molecular level, thermodynamic arguments, derived from complexation between nanoscale particles and oppositely charged polyelectrolyte chains, have been employed to interpret the adsorption of polyoxometalate clusters onto a cationic polymer layer. The scaling results describe the contact mode between a polymer chain and a cluster. The assembly can be visualized with assistance by understanding the contact between the polymer chain and the cluster.  相似文献   

3.
General synthetic methods for the grafting of peptide chains onto polyoxometalate clusters by the use of general activated precursors have been developed. Using a solution‐phase approach, pre‐synthesized peptides can be grafted to a metal oxide cluster to produce hybrids of unprecedented scale (up to 30 residues). An adapted solid‐phase method allows the incorporation of these clusters, which may be regarded as novel hybrid unnatural amino acids, during the peptide synthesis itself. These methods may open the way for the automated synthesis of peptides and perhaps even proteins that contain “inorganic” amino acids.  相似文献   

4.
Diverse conformational transitions and aggregations of regioregular poly (3-alkylthiophene)s (PATs) in different environment have been studied by means of AFM and UV-vis-spectroscopy. In methanol, which is a non-solvent for both alkyl side groups and aromatic backbone at low polymer concentration, PATs chains fold into compact poorly ordered flat structures. At higher polymer concentration PATs molecules undergo 3D aggregation into near spherical particles. In hexane, which is a selective solvent for alkyl side chains, PATs molecules undergo ordered main-chain collapse followed by 1D aggregation. Concentration-independent red shift of λmax and good resolved fine vibronic structure in the electronic absorption spectra indicate that planarization occurs on the single-molecule level.  相似文献   

5.
Interactions of oppositely charged macroions in aqueous solution give rise to intriguing aggregation phenomena, resulting in finite-size, long-lived clusters, characterized by a quite narrow size distribution. Particularly, the adsorption of highly charged linear polyelectrolytes on oppositely charged colloidal particles is strongly correlated and some short-range order arises from competing electrostatic interactions between like-charged polymer chains (repulsion) and between polymer chains and particle surface (attraction). In these systems, in an interval of concentrations around the isoelectric point, relatively large clusters of polyelectrolyte-decorated particles form. However, the mechanisms that drive the aggregation and stabilize, at the different polymer/particle ratios, a well-defined size of the aggregates are not completely understood. Nor is clear the role that the correlated polyion adsorption plays in the aggregation, although the importance of "patchy interactions" has been stressed as the possible source of attractive interaction term between colloidal particles. Different models have been proposed to explain the formation of the observed cluster phase. However, a central question still remains unanswered, i.e., whether the clusters are true equilibrium or metastable aggregates. To elucidate this point, in this work, we have investigated the effect of the temperature on the cluster formation. We employed liposomes built up by DOTAP lipids interacting with a simple anionic polyion, polyacrylate sodium salt, over an extended concentration range below and above the isoelectric condition. Our results show that the aggregation process can be described by a thermally activated mechanism.  相似文献   

6.
Oxo-metallic clusters are employed as inorganic nanobuilding blocks in order to obtain new organic–inorganic hybrid materials. Nanobuilding blocks are well-defined preformed entities which allow a better control of the inorganic domains for the elaboration of hybrid compounds. The oxo-alcoxo cluster Ti16O16(OEt)32 presents a shell of labile ethoxy groups which can be selectively exchanged with the preservation of the oxo-core in order to introduce polymerizable ligands at the surface of this nanobrick. Three different new clusters, Ti16O16(OEt)32−x(OPhCHCH2)x, have been synthesised, each cluster bears exactly 4, 8 and 16 styrenic groups. These functional clusters were copolymerized with styrene leading to three dimensional networks where the inorganic nano-fillers are covalently linked to the organic polymer. Thus new hybrid materials can be obtained and these nanobricks are good models to correlate the structure of hybrid materials and their physical properties especially their mechanical and thermal properties. The structure of the materials in function of the organic–inorganic ratio and in function of the cluster functionalities was investigated by SAXS, and the formation of the different levels of aggregation is reported.  相似文献   

7.
We report our findings on the macromolecule-to-amphiphile conversion process of a polyoxometalate–polymer hybrid and the assembled hybrid vesicles formed by aggregation of the hybrid amphiphile. The polyoxometalate–polymer hybrid is composed of a polyoxometalate (POM) cluster, which is covered by five tetrabutylammonium (Bu4N+) countercations, and a polystyrene (PS) chain. Through a cation-exchange process the Bu4N+ countercations can be replaced by protons to form a hybrid amphiphile composed of a hydrophilic, protonated POM cluster and a hydrophobic PS chain. By implementing a directed one-dimensional diffusion and analyzing the diffusion data, we confirmed that the diffusion of solvated protons rather than macromolecules or aggregates is the key factor controlling the conversion process. Once the giant hybrid amphiphiles were formed, they immediately assembled into kinetically favored vesicular aggregates. During subsequent annealing these vesicular aggregates were transformed into thermodynamically stable vesicular aggregates with a perfect vesicle structure. The success in the preparation of the POM-containing hybrid vesicles provides us with an opportunity of preparing POM-functionalized vesicles.  相似文献   

8.
A series of tris(hydroxymethyl)aminomethane (TRIS)‐based linear (bis(TRIS)) and triangular (tris(TRIS)) ligands has been synthesised and were covalently attached to the Wells–Dawson type cluster [P2V3W15O62]9? to generate a series of nanometer‐sized inorganic–organic hybrid polyoxometalate clusters. These huge hybrids, with a molecular mass similar to that of small proteins in the range of ≈10–16 kDa, were unambiguously characterised by using high‐resolution ESI‐MS. The ESI‐MS spectra of these compounds revealed, in negative ion mode, a characteristic pattern showing distinct groups of peaks corresponding to different anionic charge states ranging from 3? to 8? for the hybrids. Each peak in these individual groups could be unambiguously assigned to the corresponding hybrid cluster anion with varying combinations of tetrabutylammonium (TBA) and other cations. This study therefore highlights the prowess of the high‐resolution ESI‐MS for the unambiguous characterisation of large, nanoscale, inorganic–organic hybrid clusters that have huge mass, of the order of 10–16 kDa. Also, the designed synthesis of these compounds points to the fact that we were able to achieve a great deal of structural pre‐design in the synthesis of these inorganic–organic hybrid polyoxometalates (POMs) by means of a ligand design route, which is often not possible in traditional “one‐pot” POM synthesis.  相似文献   

9.
The conformation of single molecules of dialkyl poly para phenylene ethynylenes (PPEs), electro-active polymers, is studied in solutions using molecular dynamics simulations. The conformation of conjugated polymers affects their electro-optical properties and therefore is critical to their current and potential uses, though only limited theoretical knowledge is available regarding the factors that control their configuration. The present study investigates the affects of molecular parameters including molecular weight of the polymer and chemical structure of the side chains of PPEs in different solvents on the conformation of the polymers. The PPEs are modeled atomistically where the solvents are modeled both implicitly and explicitly. The study finds that PPEs assume extended configuration which is affected by the length of the polymer backbone and the nature and length of substituting side chains. While the polymer remains extended, local dynamics is retained and no long range correlations are observed within the backbone. The results are compared with scattering experiments.  相似文献   

10.
Abstract

Understanding the self-assembly of nanoscale metal—ligand clusters is an important research area in supramolecular chemistry, especially, if one wishes to develop a truly predictive design strategy for synthesizing these nanoscale clusters. As the building blocks for forming these clusters have become larger and more complex, spacious clusters have been synthesized which often contain large cavities. These assemblies can house guest molecules which play a previously uncharacterized role in the self-assembly processes. We seek to analyze this role: do these guest molecules act as templates? Are the guest molecules necessary for cluster formation? Does the guest drive cluster assemble by forming a stable host—guest complex with the cluster? Must a truly rational design strategy for forming metal—ligand clusters incorporate the use of templates? The role of guest molecules in the self-assembly of nanoscale coordination clusters is reviewed in this article.  相似文献   

11.
Two sets of water‐soluble poly(phenylene vinylene)s were synthesized and their optical properties were studied. The aqueous solubility of all these polymers is rendered by pendant sulfonate groups. One set of polymers (polymer I series) contains, in addition to the sulfonate pendants, dimethoxy substituents, while the other (polymer II series) contains oligo(ethylene oxide) side chains. Within each set, polymers containing lithium (Ia and IIa), sodium (Ib and IIb), and potassium (Ic and IIc) counter ions were prepared. The two sets of polymers showed different properties from physical appearance (fiber vs film) to thermal properties and to optical properties. It was found that set I polymers, with shorter side chains, exhibit stronger aggregation in aqueous solutions than set II polymers, which led to their lower fluorescence quantum yields and lower polymer‐to‐MV2+ quenching efficiencies. Within each set, the effect of counter ions on optical properties was noted. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5123–5135, 2007  相似文献   

12.
The field of hybrids has boomed since its initial conception with silicones as structural materials to the wealth of different types of hybrid materials studied nowadays as functional materials. Hybrids based on conducting polymers and a great variety of inorganic species constitute a growing area of this field. We present a brief review of the intersection between conducting polymer hybrids and electrochemical applications to energy storage and conversion. But beyond examples of hybrids active in batteries, supercapacitors, solar or fuel cells, we have tried to convey the standing challenges concerning the design of chemically (and electrochemically) complex hybrid systems with components and building blocks ranging from extended oxides or nanoparticles to carbon or oxide nanotubes, to clusters and to molecules and the opportunities arising from their integration with conducting polymers.  相似文献   

13.
We use coarse‐grained Langevin dynamics simulations of blends of generic conjugated polymers and acceptor molecules to show how architecture (e.g., side chains, backbone flexibility of oligomers) and the pair‐wise interactions between the constituents of the blend affect morphology and phase transition. Alkyl side chains on the conjugated oligomer backbones shift the liquid crystal (LC) transition temperature from that of bare conjugated backbones and the direction of the shift depends on backbone–backbone interactions. Rigid backbones and constrained side chains cause a layer‐by‐layer morphology of conjugated polymers and amorphous acceptors, whereas flexible backbones and unconstrained side chains facilitate highly ordered acceptor arrangement. Strong backbone–backbone attraction shifts LC transition to higher temperatures than weak backbone–backbone attraction, and strong acceptor–acceptor attraction increases acceptor aggregation. Pure macro‐phase separated domains form when all pair‐wise interactions in the blend are strongly attractive, whereas interconnected domains form at intermediate acceptor–acceptor attraction and strong polymer–polymer attractions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

14.
将一种可有机功能化的Wells-Dawson POM与降冰片烯相连接,制备了多金属氧簇降冰片烯单体.再利用活性可控的开环易位聚合方法(ROMP),在Grubbs 3~(rd)催化剂的作用下,合成了聚(多金属氧簇降冰片烯)-聚(己酸降冰片烯)的杂化嵌段和无规共聚物(H-CPs),分别简写为Poly(POM)_m-b-Poly(COOH)_n和Poly(POM)_m-r-Poly(COOH)_n.采用~1H-NMR、~(31)P-NMR和FTIR等方法对共聚物结构进行表征,确认我们成功地合成了由共价键连接这2种单体形成的H-CPs.最后,利用带有光散射和红外探测器的凝胶渗透色谱(SEC)测定聚合物的绝对分子量和分子量分布,证明所得到的H-CPs不仅分子量可控,而且分子量分布系数较窄.最后,研究了H-CPs催化氧化四氢噻吩(THT)成环丁亚砜(THTO)反应,结果表明,相比于聚(多金属氧簇)的均聚物(Poly(POM)),H-CPs的催化活性有所下降,原因是POM催化剂含量较低以及H-CPs在催化介质中溶解性的差异.  相似文献   

15.
We report on self-assembly of polymer and molybdenum oxide chains into a new class of lamellar hybrid materials. Aqueous ammonium molybdate and polyvinyl alcohol (PVA) or carboxymethyl cellulose (CMC) were used as the starting materials. Ammonium molybdate was hydrolyzed into layered molybdenum oxide under acidified conditions. The organic polymer chains and the inorganic molybdenum oxide layers self-assemble and pack into new hybrid composites. Scanning electron microscope (SEM) images and polarized microscopy show that these two new materials have typical lamellar structure. Transmission electron microscope (TEM) images show that the layer thickness is about 100 nm. X-ray diffraction (XRD) data confirm the formation of inorganic molybdenum oxide. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) data gave thermal behavior of these composites. The mechanism of this hybrid reaction and the templating function of polymers were discussed in this paper. A special entropy effect was discovered when polymer was used as guest species. This entropy effect makes polymers preferential candidates as guest species rather than small molecules when fabricating organic/inorganic layered hybrid materials. We believe that this opens a new way to create organic/inorganic hybrid superstructures.  相似文献   

16.
The controlled hydrolysis of metal alkoxides in the presence of methacrylic acid results in metal oxide clusters capped by polymerizable methacrylate ligands. Radical polymerization of small portions of such clusters with organic co-monomers allows the preparation of an interesting new type of inorganic-organic hybrid polymers in which the metal oxo clusters efficiently crosslink the organic polymers chains. SAXS investigations revealed that the clusters may aggregate to form clusters of clusters. The properties of the hybrid materials, such as thermal stability, swelling, dielectric and mechanical properties, depend not only on the portion of incorporated cluster, i.e. the crosslinking density, but also on the kind of employed cluster.  相似文献   

17.
A series of cationic dendrons bearing triethylene glycol monomethyl ether terminal groups of different generations have been synthesized and used to encapsulate an inorganic polyanionic cluster [K12.5Na1.5(NaP5W30O110)] through electrostatic interactions. The resulting dendritic cation–encapsulated polyoxometalate (POM) complexes, cluster–dendrimers, are soluble in water and exhibit lower critical solution temperatures (LCST). The thermoresponsivities of these complexes in aqueous solutions were studied by turbidimetry and variable‐temperature 1H NMR spectroscopy. The observed cloud points show a remarkable dependence on the generation of the dendrons. Complexes composed of first‐generation dendrons exhibit no obvious thermoresponsive properties, but for complexes bearing second‐generation dendrons, the LCST decreases as the number of dendritic cations around the POM cluster increases. Complexes composed of third‐generation cations underwent reversible aggregation and disaggregation upon heating and cooling, respectively. This thermally induced self‐aggregation was characterized by DLS and TEM. In addition, the effects of salt and solvent on the LCST were investigated. This research demonstrates a new type of thermoresponsive dendritic organic–inorganic hybrid complex and provides a general route to the endowment of POMs with temperature‐sensitive properties through electrostatic interactions.  相似文献   

18.
The morphology or dispersion control in inorganic/organic hybrid systems is studied, which consist of monodisperse CdSe tetrapods (TPs) with grafted semiconducting block copolymers with excess polymers of the same type. Tetrapod arm‐length and amount of polymer loading are varied in order to find the ideal morphology for hybrid solar cells. Additionally, polymers without anchor groups are mixed with the TPs to study the effect of such anchor groups on the hybrid morphology. A numerical model is developed and Monte Carlo simulations to study the basis of compatibility or dispersibility of TPs in polymer matrices are performed. The simulations show that bare TPs tend to form clusters in the matrix of excess polymers. The clustering is significantly reduced after grafting polymer chains to the TPs, which is confirmed experimentally. Transmission electron microscopy reveals that the block copolymer‐TP mixtures (“hybrids”) show much better film qualities and TP distributions within the films when compared with the homopolymer‐TP mixtures (“blends”), representing massive aggregations and cracks in the films. This grafting‐to approach for the modification of TPs significantly improves the dispersion of the TPs in matrices of “excess” polymers up to the arm length of 100 nm.  相似文献   

19.
Mn-Anderson-C6 and Mn-Anderson-C16, A type of inorganic-organic hybrid molecules containing a large anionic polyoxometalate (POM) cluster and two C6 and C16 alkyl chains, respectively, demonstrate amphiphilic surfactant behavior in the mixed solvents of acetonitrile and water. The amphiphilic hybrid molecules can slowly assemble into membrane-like vesicles by using the POM clusters as polar head groups, as studied by laser light scattering and TEM techniques. The hollow vesicles have a typical bilayer structure with the hydrophilic Mn-Anderson cluster facing outside and long hydrophobic alkyl chains staying inside to form the solvent-phobic layer. Due to the rigidity of the POM polar heads, the two alkyl tails have to bend significantly for the vesicle formation, which makes the vesicle formation more difficult compared to some conventional surfactants. This is the first example of using hydrophilic POM macroions as polar head groups for a surfactant system.  相似文献   

20.
Two types of amphiphilic polymers composed of azobenzene repeat units in the main chain connected either via ethynylene (acetylene) or butadiynylene (diacetylene) linkages and carrying oligo(ethylene glycol) side chains were reported. Synthesis was accomplished by polycondensation involving Sonogashira–Hagihara cross coupling and Glaser coupling, respectively. Solvent titration experiments revealed that both polymers fold into stable helices in a polar environment. While the ethynylene-bridged polymer resembled the behavior of its oligomeric counterparts, introduction of the extended diacetylene unit strengthened π,π-stacking interactions in case of the butadiynylene-bridged polymer leading to a pronounced aggregation tendency and suppressing photoisomerization in the folded state. Our study demonstrates the importance of backbone connectivity to balance intra- and intermolecular forces for the successful design of photoresponsive polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 313–318  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号