首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, we report the photochemical synthesis of gold nanoparticles in N,N′-dimethylformamide by addition of a photocatalyst like thiourea-modified polyoxometalate (γ-SiW12O40). The polyoxometalate behaves as an electron relay. Reduction of the polyoxometalate takes place under UV irradiation followed by a transfer of electrons to the gold ions, leading to the formation of gold nanoparticles. The formation of the gold particles was monitored with time by UV–Vis spectrophotometry. The polyoxometalate also acts as a stabilizing agent and helps in controlling the size of the nanoparticles. The shape and size distribution was obtained from transmission electron microscopy studies. Spherical and monodisperse gold nanoparticles of ~10 nm size were obtained.  相似文献   

2.
Gold(I)‐polyoxometalate hybrid complexes 1 – 4 ([PPh3AuMeCN]xH4?xSiW12O40, x=1–4) were synthesized and characterized. The structure of the primary gold(I)–polyoxometalate 1 (x=1) was fully ascertained by XRD, FTIR, 31P and 29Si magic‐angle spinning (MAS) NMR, mass spectroscopy, and SEM–energy dispersive X‐ray spectroscopy (EDX) techniques. Moreover, this complex exhibited better catalytic activity and selectivity compared with standard, homogeneous, gold catalysts in the new rearrangement of propargylic gem‐diesters.  相似文献   

3.
Electrocatalysis by polyoxometalate (POM)-monolayer protected gold nanoparticles is herein demonstrated using a newly discovered phenomenon that makes it possible to observe the electrochemistry of dilute aqueous solutions of these colloidal nanostructures. To preserve the integrity of the gold nanoparticles’ electrostatically-stabilized POM-monolayer structures, deposition and drying of the POM-protected metal(0) NPs on the electrode surface must be avoided. Overcoming this constraint, we here show that POM-monolayer protected gold nanoparticles can be induced to reversibly associate with electrode surfaces, resulting in dramatic current amplification and well behaved, quasi-reversible cyclic voltammetric behavior at remarkably small electrolyte concentrations, thus making it possible to investigate electrocatalysis by dilute aqueous solutions of POM-protected gold NPs.  相似文献   

4.
Aqueous polyoxometalate (H3PMo12O40) solution reduced by CO with liquid water using gold nanoparticle catalysts at room temperature, which contains protons in liquid water and electrons associated with the reduced polyoxometalate, can produce gaseous H2 or can hydrogenate benzene over an electrochemical cell consisting of a simple carbon anode, a proton-exchange membrane, and a Pt- or Rh-based cathode. In the present cell, H2 can be produced from the reduced H3PMo12O40 solution at voltages that are lower by about 1.15 V compared to water electrolysis.  相似文献   

5.
PJ Kitson  MH Rosnes  V Sans  V Dragone  L Cronin 《Lab on a chip》2012,12(18):3267-3271
We utilise 3D design and 3D printing techniques to fabricate a number of miniaturised fluidic 'reactionware' devices for chemical syntheses in just a few hours, using inexpensive materials producing reliable and robust reactors. Both two and three inlet reactors could be assembled, as well as one-inlet devices with reactant 'silos' allowing the introduction of reactants during the fabrication process of the device. To demonstrate the utility and versatility of these devices organic (reductive amination and alkylation reactions), inorganic (large polyoxometalate synthesis) and materials (gold nanoparticle synthesis) processes were efficiently carried out in the printed devices.  相似文献   

6.
It was shown that the reaction of solid polyoxometalate compounds containing tetraamine cations of nickel(II) or copper(II) with an aqueous solution of silver(I) nitrate leads to the formation of nanoclusters of the metal with sizes of 6–10 nm, localized on the surface of the crystalline matrix. It was established that the realization of the oxidation–reduction processes depends substantially both on the cationic and on the anionic component of the polyoxometalate complexes.  相似文献   

7.
通过4-N,N二甲基胺基吡啶和多金属氧酸负离子形成的复合载体稳定金纳米颗粒,制得金纳米簇-多金属氧酸盐的复合物.复合物的组成以及金纳米颗粒的分布状态由XPS和TEM表征.利用多金属氧酸和金纳米颗粒的相互协助作用,使得这类复合物是一种优异的低温选择性氧化催化剂.  相似文献   

8.
多金属氧酸盐四硫富瓦烯衍生物荷移盐超薄导电膜(英)   总被引:2,自引:0,他引:2  
0IntroductionThecharge鄄transfer(CT)saltsbasedplanarπ鄄electrondonorETasaclassofmolecule鄄basedmate鄄rialshavebeenstudiedextensivelyinthepasttwentyyears,becauseoftheirmetallicconductivityandevensuperconductivity[1~6].Inrecentyears,polyoxometalateshaveatt  相似文献   

9.
Gold(I)-based drugs have been used successfully for the treatment of rheumatoid arthritis (RA) for several years. Although the exact mechanism of action of these gold(I) drugs for RA has not been clearly established, the interaction of these compounds with mammalian enzymes has been extensively studied. In this paper, we describe the interaction of therapeutic gold(I) compounds with mammalian proteins that contain cysteine (Cys) and selenocysteine (Sec) residues. Owing to the higher affinity of gold(I) towards sulfur and selenium, gold(I) drugs rapidly react with the activated cysteine or selenocysteine residues of the enzymes to form protein-gold(I)-thiolate or protein-gold(I)-selenolate complexes. The formation of stable gold(I)-thiolate/selenolate complexes generally lead to inhibition of the enzyme activity. The gold-thiolate/selenolate complexes undergo extensive ligand exchange reactions with other nucleophiles and such ligand exchange reactions alter the inhibitory effects of gold(i) complexes. Therefore, the effect of gold(I) compounds on the enzymatic activity of cysteine- or selenocysteine-containing proteins may play important roles in RA. The interaction of gold(I) compounds with different enzymes and the biochemical mechanism underlying the inhibition of enzymatic activities may have broad medicinal implications for the treatment of RA.  相似文献   

10.
A metal-organic-polyoxometalate hybrid compound with two functional centers consisting of a rhodium(I)bis(diphenylphospine) unit connected through two alkylene bridging groups to a lacunary Keggin type polyoxometalate was synthesized and used as an effective, recyclable hydrogenation catalyst in monophasic and aqueous biphasic reaction modes.  相似文献   

11.
Graphene oxide (GO) nanosheets and polyoxometalate such as H(3)PW(12)O(40) (PTA) are prepared into a multilayer film via a layer-by-layer inkjet printing method. The GO/PTA composite thin film shows linear, uniform and regular layer-by-layer growth. Under UV-irradiation, a photoreduction reaction takes place in the film which converts GO to reduced GO (rGO) due to the photoreduction activity of polyoxometalate clusters. According to the cyclic voltammograms measurement, the rGO/PTA composite film displays good electrocatalytic activity for the oxidation of dopamine (DA). The oxidation peak current (I(pa)) increases gradually with increasing the dopamine concentration, which may be used in electrochemical biosensors.  相似文献   

12.
《中国化学快报》2021,32(12):3718-3732
Photophysical properties of organic and organometallic luminophors are closely related with their molecular packings, enabling the exploitation of stimuli-responsive functional luminescent molecules. Mechanochromic molecules, which can change their luminescence characteristics after mechanical stimulus, have received an increasing interest due to their promising applications in multifunctional sensors and molecular switches. During the past two decades, the development of gold(I) chemistry has been attracting the attention of plenty of researchers. Indeed, a variety of gold(I) complexes with fascinating photophysical behaviors have been discovered. This review focuses on the research progress in the different types of mechanoluminochromic gold(I) complexes, including mono-, bi- and multi-nuclear gold(I) systems. Their interesting luminescence behaviors of these gold(I)-containing luminogens upon mechanical stimulus and the proposed mechanisms of their observed mechanochromic luminescence are summarized systematacially. Moreover, this review will put forward an outlook about the possible opportunities and challenges in this significative scientific field.  相似文献   

13.
The process of grafting H(3)PMo(12)O(40) onto silica surfaces is studied using periodic density functional theory methods. For surfaces with a high hydroxyl coverage, the hydroxyl groups are consumed by the polyoxometalate protons, resulting in water formation and the creation of a covalent bond between the polyoxometalate and the surface, and mostly no remaining acidic proton on the polyoxometalate. When the surfaces are partially dehydroxylated and more hydrophobic, after temperature pretreatment, less covalent and hydrogen bonds are formed and the polyoxometalate tends to retain surface hydroxyl groups, while at least one acidic proton remains. Hence the hydroxylation of the surface has a great impact on the chemical properties of the grafted polyoxometalate. In return, the polyoxometalate species affects the compared stability of the partially hydroxylated silica surfaces in comparison with the bare silica case.  相似文献   

14.
The controlled assembly of gold nanoparticles (AuNPs) with the size of quantum dots into predictable structures is extremely challenging as it requires the quantitatively and topologically precise placement of anisotropic domains on their small, approximately spherical surfaces. We herein address this problem by using polyoxometalate leaving groups to transform 2 nm diameter gold cores into reactive building blocks with hydrophilic and hydrophobic surface domains whose relative sizes can be precisely tuned to give dimers, clusters, and larger micelle-like organizations. Using cryo-TEM imaging and 1H DOSY NMR spectroscopy, we then provide an unprecedented “solution-state” picture of how the micelle-like structures respond to hydrophobic guests by encapsulating them within 250 nm diameter vesicles whose walls are comprised of amphiphilic AuNP membranes. These findings provide a versatile new option for transforming very small AuNPs into precisely tailored building blocks for the rational design of functional water-soluble assemblies.  相似文献   

15.
One gold(I)-substituted styrylbenzene, six digold(I) distyrylbenzenes, one tetragold distyrylbenzene, and four digold distyrylnaphthalene complexes were synthesized using base-promoted auration, alkynylation, triazolate formation, and Horner-Wadsworth-Emmons reactions. The gold(I) fragments are either σ-bonded to the aromatic system, or they are attached through an alkynyl or triazolate spacer. Product formation was monitored using (31)P{(1)H} NMR spectroscopy. Systems in which gold(I) binds to the central benzene ring or the terminal phenyl rings were designed. All of these complexes have strong ultraviolet absorptions and emit blue light. The position of the gold(I) attachment influences the luminescence efficiency. Complexes with two gold(I) fragments attached to the ends of the conjugated system have fluorescence quantum yields up to 0.94, when using 7-diethylamino-4-methylcoumarin as the emission standard. Density-functional theory calculations on three high-yielding emitters suggest that luminescence originates from the distyrylbenzene or -naphthalene bridge.  相似文献   

16.
Following an increasing interest in the gold drug therapy field, nine new neutral azolate gold(I) phosphane compounds have been synthesized and tested as anticancer agents. The azolate ligands used in this study are pyrazolates and imidazolates substituted with deactivating groups such as trifluoromethyl, nitro or chloride moieties, whereas the phosphane co-ligand is the triphenylphosphane or the more hydrophilic TPA (TPA = 1,3,5-triazaphosphaadamantane). The studied gold(I) complexes are: (3,5-bis-trifluoromethyl-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (1), (3,5-dinitro-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (2), (4-nitro-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (5), (4,5-dichloro-1H-imidazolate-1-yl)-triphenylphosphane-gold(I) (7), with the related TPA complexes (3), (4), (6) and (8) and (1-benzyl-4,5-di-chloro-2H-imidazolate-2-yl)-triphenylphosphane-gold(I) (9). The presence of deactivating groups on the azole rings improves the solubility of these complexes in polar media. Compounds 1-8 contain the N-Au-P environment, whilst compound 9 is the only one to contain a C-Au-P environment. Crystal structures for compounds 1 and 2 have been obtained and discussed. Interestingly, the newly synthesized gold(I) compounds were found to possess a pronounced cytotoxic activity on several human cancer cells, some of which were endowed with cis-platin or multidrug resistance. In particular, among azolate gold(I) complexes, 1 and 2 proved to be the most promising derivatives eliciting an antiproliferative effect up to 70 times higher than cis-platin. Mechanistic experiments indicated that the inhibition of thioredoxin reductase (TrxR) might be involved in the pharmacodynamic behavior of these gold species.  相似文献   

17.
利用电沉积法将不溶于常规无机和有机溶剂的多金属氧酸盐基的配位聚合物1, [{La(H2O)5·(dipic)}{La(H2O)(dipic)}]2{Mo8O26}·10H2O溶解于离子液体[RMIM][HT]或[RMIM][HP]中, 在恒电位下电解, 得到多金属氧酸盐基的配位聚合物膜. 应用红外光谱、X射线光电子能谱和XRD粉末衍射等方法研究多金属氧酸盐基配位聚合物膜的结构, 发现其与多金属氧酸盐基配位聚合物有相同的结构. 实现了多金属氧酸盐基配位聚合物在电极上的重构设计以及多金属氧酸盐基的配位聚合物的二次加工成型.  相似文献   

18.
多元多金属含氧簇合物   总被引:28,自引:0,他引:28  
多金属含氧簇合物是一大类具有独特结构和特殊性能的化合物,对于基础理论研究和实际应用均有重要意义,其中多元多金属含氧簇合物的重要性日益渐增,本文拟对多元多金属含氧簇合物的结构,性能和制备作扼要的评述。  相似文献   

19.
The controlled assembly of gold nanoparticles (AuNPs) with the size of quantum dots into predictable structures is extremely challenging as it requires the quantitatively and topologically precise placement of anisotropic domains on their small, approximately spherical surfaces. We herein address this problem by using polyoxometalate leaving groups to transform 2 nm diameter gold cores into reactive building blocks with hydrophilic and hydrophobic surface domains whose relative sizes can be precisely tuned to give dimers, clusters, and larger micelle‐like organizations. Using cryo‐TEM imaging and 1H DOSY NMR spectroscopy, we then provide an unprecedented “solution‐state” picture of how the micelle‐like structures respond to hydrophobic guests by encapsulating them within 250 nm diameter vesicles whose walls are comprised of amphiphilic AuNP membranes. These findings provide a versatile new option for transforming very small AuNPs into precisely tailored building blocks for the rational design of functional water‐soluble assemblies.  相似文献   

20.
张睿  徐琴  施敏 《化学学报》2012,70(15):1593-1598
联萘胺出发合成了氮杂环卡宾双核和单核金络合物, 通过X射线的单晶衍射确定了它们的结构, 并将其应用于催化胺芳基化反应中, 以高达95%的收率得到吡咯烷类化合物. 综合上述实验结果, 发现氮杂环卡宾双核金络合物4b中存在着Au(I)-Au(I)间相互弱作用力, 而且这种弱相互作用可能对该催化反应起重要的作用, 以高收率得到吡咯烷类化合物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号