首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this study, DNA adsorption properties of polyethylenimine (PEI)-attached poly(p-chloromethylstyrene) (PCMS) beads were investigated. Spherical beads with an average size of 186 microm were obtained by the suspension polymerization of p-chloromethylstyrene conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, PCMS beads had a specific surface area of 14.1 m2/g. PEI chains could be covalently attached onto the PCMS beads with equilibrium binding capacities up to 208 mg PEI/g beads, via a direct chemical reaction between the amine and chloromethyl groups. After PEI adsorption with 10% (w/w) initial PEI concentration, free amino content of PEI-attached PCMS beads was determined as 0.91 mequiv./g. PEI-attached PCMS beads were utilized as sorbents in DNA adsorption experiments conducted at +4 degrees C in a phosphate buffer medium of pH 7.4. DNA immobilization capacities up to 290 mg DNA/g beads could be achieved with the tried sorbents. This value was approximately 50-times higher relative to the adsorption capacities of previously examined sorbents.  相似文献   

2.
Casein is well known as a good protein emulsifier and beta-casein is the major component of casein and commercial sodium caseinate. Dye affinity adsorption is increasingly used for protein separation. beta-Casein adsorption onto Reactive Red 120 attached magnetic poly(2-hydroxyethyl methacrylate) (m-PHEMA) beads was investigated in this work. m-PHEMA beads (80-120 microm in diameter) were produced by dispersion polymerization. The dichlorotriazine dye Reactive Red 120 was attached covalently as a ligand. The dye attached beads, having a swelling ratio of 55% (w/w) and carrying different amounts of Reactive Red 120 (9.2 micromol . g(-1)-39.8 micromol . g(-1)), were used in beta-casein adsorption studies. The effects of the initial concentration, pH, ionic strength and temperature on the adsorption efficiency of dye attached beads were studied in a batch reactor. The non-specific adsorption on the m-PHEMA beads was 1.4 mg . g(-1). Reactive Red 120 attachment significantly increased the beta-casein adsorption up to 37.3 mg . g(-1). More than 95.4% of the adsorbed beta-casein was desorbed in 1 h in a desorption medium containing 1.0 M KSCN at pH 8.0. We concluded that Reactive Red 120 attached m-PHEMA beads can be applied for beta-casein adsorption without significant losses in the adsorption capacities.  相似文献   

3.
Three new IMAC chelating systems, incorporating immobilised xylenyl-bridged bis(1,4,7-triaza-cyclonane) ligands, complexed with Cu(2+) ions to form binuclear species, have been prepared. Their binding properties have been investigated with three small globular proteins (hen egg white lysozyme, horse skeletal muscle myoglobin and horse heart cytochrome c). The effects of buffer pH, ionic strength and composition on the binding behaviour of these proteins to these new IMAC sorbents have been examined and compared with those found for the corresponding immobilized mononuclear copper complex of 1,4,7-triazacyclononane (tacn). Higher protein binding affinities were observed with the Cu(2+)-bis(tacn) sorbents compared to the Cu(2+)-tacn system, consistent with the immobilized binuclear copper(II) species undergoing enhanced coordinative interaction with the surface-exposed histidine residues of these proteins. Moreover, the protein binding characteristics of these IMAC sorbents at higher ionic strengths, such as 1M NaCl, also reflect the presence of the aromatic ring in the bis(tacn) ligands, whereby hydrophobic pi/pi stacking interactions can occur with the proteins.  相似文献   

4.
Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35 %, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC4D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of <15 % (averaged for several metal ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.  相似文献   

5.
本文以KH560、苯乙烯、马来酸酐为连接组分,将二氧化钛接枝到聚(苯乙烯-二乙烯基苯)微球的表面,成功制备了无孔和多孔纳米复合微球。研究了硅烷偶联剂(KH560)和苯乙烯对二氧化钛在无孔微球表面的分散性和接枝数量以及支撑微球的多孔性质对接枝到微球内部的二氧化钛数量的影响。结果表明,KH560和苯乙烯能够提高二氧化钛在微球表面的分散性和稳定性,使二氧化钛以30-80nm的粒径接枝在微球表面。苯乙烯又能使二氧化钛在无孔微球表面的接枝数量从10.4%增大到20.4%。平均孔径为136nm的多孔微球为支撑微球得到的复合粒子中二氧化钛最高接枝量可达26%,明显高于无孔微球和平均孔径为31nm的多孔微球。  相似文献   

6.
Poly(2‐hydroxyethyl methacrylate‐ethylene dimethacrylate) (PHEMA‐EDMA) beads were produced by free radical co‐polymerization of 2‐hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA). Then, metal complexing ligand alizarin yellow was covalently attached onto PHEMA‐EDMA beads. The resulting resin has been characterized by FT‐IR and studied for the preconcentration and determination of trace Pb(II) ion from solution samples. The optimum pH value for sorption of the metal ion was 5. The sorption capacity of functionalized resin is 100 mg.g‐1. The chelating resin can be reused for 20 cycles of sorption‐desorption without any significant change in sorption capacity. A recovery of 96% was obtained for the metal ion with 0.1 M nitric acid as eluting agent. The equilibrium adsorption data of Pb(II) on modified resin were analyzed by Langmuir and Freundlich models. Based on equilibrium adsorption data the Langmuir and Freundlich constants were determined 2.571 and 418.7 at pH 5 and 25 °C. The method was applied for lead ions determination from well water sample.  相似文献   

7.
Linoleic acid attached chitosan beads [poly(LA-Ch)] (1.25 μm in diameter) are obtained by the formation of amide linkages between linoleic acid and chitosan. Poly(LA-Ch) beads are characterized by FTIR, TEM, and swelling studies. Poly(LA-Ch) beads are used for the purification of immunoglobulin-G (IgG) from human plasma in a batch system. The maximum IgG adsorption is observed at pH 7.0 for HEPES buffer. IgG adsorption onto the plain chitosan beads is found to be negligible. Adsorption values up to 136.7 mg/g from aqueous solutions are obtained by poly(LA-Ch) beads. IgG adsorption saw an increase as a result of increasing temperature. Higher amounts of IgG are adsorbed from human plasma (up to 390 mg/g) with a purity of 92%. The adsorption phenomena appeared to follow a typical Langmuir isotherm. It is observed that IgG could be repeatedly adsorbed and desorbed without significant loss when we take into account the adsorption amount. It is concluded that the poly(LA-Ch) beads allowed one-step purification of IgG from human plasma.  相似文献   

8.
Summary New general methods for the preparation of nonporous beads from macroporous beads are described. One method is based on filling the inner volume of the beads with a solution of a monomer which binds to the matrix at the same time as it is allowed to polymerize. The method is illustrated with agarose and silica as matrices and glycidol as monomer. In an alternative, but principally similar method, we first attached allyglycidyl ether to agarose via the epoxide groups and then allowed acrylamide to react with the immobilized allyl groups during polymerization. In an analogous way, nonporous silica beads were prepared by coupling -methacryloxypropyltrimethoxy silane to the macroporous beads followed by polymerization of acrylamide or N-methylolacrylamide on the immobilized methacryl groups. The latter monomer has the advantage of giving a polymer rich in OH groups, which can be used for crosslinking or/and attachment of different ligands (the glycidol polymers have the same advantage).The nonporous agarose beads have chromatographic properties similar to those of the previously described nonporous agarose beads prepared by shrinkage and subsequent crosslinking. For instance, the beds are compressible, which favors the resolution: compressed beds of large beads give the same or higher resolution than do beds of small beads. Another similarity is that the resolution is independent of flow rate or is even enhanced upon an increase in flow rate, maybe in part owing to the generation of a flow pattern which transports the solute from one bead to another faster than does diffusion. These similarities are demonstrated by anion-exchange and hydrophobic-interaction chromatography of proteins. Even the nonporous silica beads are somewhat deformable owing to the relatively thick polymer coating and share with the nonporous agarose beads the attractive relation between resolution and flow rate. In addition, in comparison with naked silica beads they exhibit very little protein adsorption and are more pH stable. A compressed bed of nonporous, coated 30–45 m silica beads gave in an HIC experiment a resolution comparable to that obtained with a bed of noncompressed, nonporous 1.5-m silica beads, which give a very high resolution, as shown by Unger and coworkers [5].  相似文献   

9.
Haron MJ  Wan Md ZW  Desa MZ  Kassim A 《Talanta》1994,41(5):805-807
Poly(hydroxamic acid) chelating ion-exchange resin was prepared from crosslinked poly(methacrylate) beads. The starting polymer was prepared by a suspension polymerization of methacrylate and divinyl benzene. Conversion of the ester groups into the hydroxamic acid was carried out by treatment with hydroxylamine in an alkaline solution. Hydroxamic acid capacity of the product was 2.71 mmol/g. The resin exhibited high affinity towards Fe(III) and Pb ions and its capacities for Fe(III), Pb, Cu, Ni and Co ions were pH dependent. The ability of the resin to carry out the separation of Fe(III)CuCo/Ni and PbNi ions is also reported.  相似文献   

10.
The influence of relative humidity (RH) during the film preparation on the surface morphology and on the material distribution of the resulting technical polymer blend films consisting of poly (methyl methacrylate) (PMMA) and poly (vinyl butyral) (PVB) is investigated by atomic force microscopy. Both pure polymers and polymer blends with different compositions of PVB/PMMA dissolved in tetrahydrofuran (THF) were used. Polymer films prepared under dry conditions (RH < 20%) are compared with those that have the same polymer composition but were prepared under increased humidity conditions (RH > 80%). The films consisting of the pure polymers showed a nonporous surface morphology for low‐humidity preparation conditions, whereas high‐humidity preparation conditions lead to porous PVB and PMMA films, respectively. These pores are explained as the result of a breath figure formation. In the case of the polymer blend films containing both polymers, porous or phase‐separated surface structures were observed even at low‐humidity conditions. A superposition of the effects of phase separation and breath figure formation is observed in the case of polymer blend films prepared under high‐humidity conditions. Atomic force microscopy (AFM) images taken before and after the treatment with ethanol as a selective solvent for PVB indicate that PMMA is deposited on top of a PVB layer in the case of the low‐humidity preparation process whereas for high‐humidity conditions the silicon substrate is covered with a PMMA film. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
以氯甲基化聚苯乙烯树脂(CMPS)为基质, 通过表面引发原子转移自由基聚合(SI-ATRP)反应将聚甲基丙烯酸缩水甘油酯(PGMA)接枝到树脂表面, 再与亚氨基二乙酸(IDA)反应, 制备了一种新型螯合树脂. 采用红外光谱、 元素分析及比表面积与微孔分析仪对其结构进行表征. 树脂表面甲基丙烯酸缩水甘油酯(GMA)接枝量和IDA含量及对Ni(Ⅱ), Cu(Ⅱ)和Pb(Ⅱ)的吸附容量均随聚合时间的延长而增大, 聚合时间为18 h时, 最大吸附容量分别为1.29, 1.19和0.83 mmol/g. 结果表明, SI-ATRP是制备高吸附容量及吸附容量可控的螯合树脂的可行方法.  相似文献   

12.
The aim of this study is to prepare concanavalin A (Con A) bound poly(2-hydroxy ethyl methacrylate) (PHEMA) beads for cell affinity chromatography. In the first step, PHEMA beads were produced by suspension polymerization, and activated by cyanogen bromide (CNBr) in an alkaline medium (pH 11.5), and then, the bio-ligand “Con A” was attached by covalent binding onto the CNBr activated beads. PHEMA beads were characterized by scanning electron microscopy (SEM), surface area and pore size measurements. The PHEMA beads have a spherical shape and porous structure. The specific surface area of the PHEMA beads was found to be 39.7 m2/g with a size range of 150–200 μm in diameter and the swelling ratio was 55%. The amount of bound Con A was controlled by changing pH and the initial concentrations of CNBr and Con A. The non-specific adsorption of Con A on the plain PHEMA beads was 0.1 mg/g. The maximum Con A binding was 4.8 mg/g at pH 7.25. Both plain and Con A bound PHEMA beads were interacted first with the myeloma cell suspension in phosphate buffer. Myeloma cell attachment was very low for the plain PHEMA beads, while the number of myeloma cells attached increased almost 20 fold when the Con A bound beads were used. In order to look at whether or not the interaction of the Con A bound PHEMA beads and myeloma cells are affected from the biological molecules and other cells in the medium. We selected sheep blood itself as the medium, and mixed with the myeloma cell suspension and changed the environment. Cell adhesion decreased but not very significantly by changing the medium from simple buffer to sheep blood.  相似文献   

13.
Glass beads were etched with acids and bases to increase the surface porosity and the number of silanol groups that could be used for grafting materials to the surfaces. The pretreated glass beads were functionalized using 3‐aminopropyltriethoxysilane (APS) coupling agent and then further chemically modified by reacting the carboxyl groups of carboxylic acid polymers with the amino groups of the pregrafted APS. Several carboxylic acid polymers and poly(maleic anhydride) copolymers, such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), poly(styrene‐alt‐maleic anhydride) (PSMA), and poly(ethylene‐alt‐maleic anhydride) (PEMA) were grafted onto the bead surface. The chemical modifications were investigated and characterized by FT‐IR spectroscopy, particle size analysis, and tensiometry for contact angle and porosity changes. The amount of APS and the different polymer grafted on the surface was determined from thermal gravimetric analysis and elemental analysis data. Spectroscopic studies and elemental analysis data showed that carboxylic acid polymers and maleic anhydride copolymers were chemically attached to the glass bead surface. The improved surface properties of surface modified glass beads were determined by measuring water and hexane penetration rates and contact angle. Contact angles increased and porosity decreased as the molecular weights of the polymer increased. The contact angles increased with the hydrophobicity of the attached polymer. The surface morphology was examined by scanning electron microscopy (SEM) and showed an increase in roughness for etched glass beads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A new “grafting to” strategy was proposed for the preparation of polymer based ion exchange supports carrying polymeric ligands in the form of weak or strong ion exchangers. Monodisperse porous poly(glycidyl methacrylate-co-ethylene dimethacrylate), poly(GMA-co-EDM) particles 5.9 μm in size were synthesized by “modified seeded polymerization”. Poly(2,3-dihydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(DHPM-co-EDM) particles were then obtained by the acidic hydrolysis of poly(GMA-co-EDM) particles. The hydroxyl functionalized beads were treated with 3-(trimethoxysilyl)propyl methacrylate to have covalently linked methacrylate groups on the particle surface. The selected monomers carrying weak or strong ionizable groups (2-acrylamido-2-methyl-1-propane sulfonic acid, AMPS; 2-dimethylaminoethylmethacrylate, DMAEM and N-[3-(dimethylamino)propyl] methacrylamide, DMAPM) were subsequently grafted onto the particles via immobilized methacrylate groups. The final polymer based materials with polyionic ligands were tried as chromatographic packing in the separation of proteins by ion exchange chromatography. The proteins were successfully separated both in the anion and cation exchange mode with higher column yields with respect to the previously proposed materials. The plate heights obtained for poly(AMPS) and poly(DMAEM) grafted poly(DHPM-co-EDM) particles by using proteins as the analytes were 80 and 200 μm, respectively. Additionally, the plate height exhibited no significant increase with the increasing linear flow rate in the range of 1–20 cm/min. The most important property of the proposed strategy is to be applicable for the synthesis of any type of ion exchanger both in the strong and weak form.  相似文献   

15.
An immobilized immuno-stirrer is described for the determination of creatine kinase-MB isoenzyme in blood serum. The IgG antibodies are immobilized on alkylamine glass beads using glutaraldehyde as cross-linking reagent, and the beads are packed into a rotating porous cell. After incubation with stirring, the CK-M isoenzymes in the blood serum sample are inhibited and are bound to the antibodies inside the stirrer. The residual CK-B isoenzyme activity is then determined spectrophotometrically or electrochemically. The binding capacity of the immuno-stirrer to CK-M isoenzyme was estimated to be 800 Ul-1 with an average inhibitory efficiency of 97.8%. The within-day and day-to-day coefficients of variation were 5% and 4%, respectively, over a period of 52 days. An immuno-stirrer loaded with antibodies attached to cyanogen bromide-activated cellulose beads was also characterized, but the antibodies were not as stable as on glass beads.  相似文献   

16.
Anti-low density lipoprotein antibody (anti-LDL) molecules were attached covalently and oriented through Protein A onto poly(2-hydroxyethyl methacrylate-ethylene glycol dimethacrylate) [poly(HEMA-EGDMA)] beads in order to remove cholesterol specifically from hypercholesterolemic human plasma. Poly(HEMA-EGDMA) beads were produced by suspension polymerization. Blood compatibility tests were performed. All the clotting times were increased when compared with control plasma. Loss of platelets and leukocytes was very low. The maximum anti-LDL attachment was 11.6 mg . g(-1) in the case of random immobilization and 28.3 mg . g(-1) in the case of oriented immobilization. In the latter case, Protein A loading was 8.3 mg . g(-1) at pH 7.5 (borate buffer, 0.15 M NaCl). There was low non-specific cholesterol adsorption onto the poly(HEMA-EGDMA) beads, about 0.83 mg . g(-1). Random and oriented anti-LDL attached beads adsorbed 8.2 mg and 11.7 mg cholesterol per g of bead from hypercholesterolemic human plasma, respectively. Up to 96% of the adsorbed cholesterol was desorbed. The binding-elution cycle was repeated 6 times using the same beads. There was no significant loss of binding capacity.  相似文献   

17.
Novel monodisperse, non-porous, cross-linked poly (glycidyl methacrylate) beads (PGMA) were employed as the support for high performance affinity chromatography. Heparin was covalently attached to PGMA beads by three different coupling methods. Heparin-PGMA-I was prepared by directly coupling amino-groups of heparin with PGMA. Heparin-PGMA-II and III were prepared by the coupling of heparin to amino-PGMA, which was obtained by amination of PGMA. Heparin-PGMA-II was prepared by coupling the carboxyl groups of heparin to amino-PGMA by using water-soluble carbodiimide as coupling reagent, and heparin-PGMA-III was prepared by the reductive amination of heparin and amino-PGMA with sodium cyanoborohydride. The heparin contents of heparin-PGMA-I, II and III were 1.6, 10.2 and 1.0 mg/g beads, respectively. Their affinity capacities for antithrombin III were investigated. Their binding activity to antithrombin III was not proportional to the content of heparin immobilized, and heparin-PGMA-I was the most efficient affinity medium for antithrombin III. The resultant affinity media presented minimal non-specific interaction with other proteins and can be used in a wide pH range. All the three heparin-PGMA beads were exploited for the separation of antithrombin III from human plasma. The purity of antithrombin III obtained was higher than 90%, which was confirmed by high performance size exclusion chromatography.  相似文献   

18.
Crosslinked macroporous polymer particles containing a single large hole in their surfaces were prepared by solution crosslinking of butyl rubber (PIB) in benzene using sulfur monochloride (S2Cl2) as a crosslinking agent. The reactions were carried out within the droplets of frozen solutions of PIB and S2Cl2 at −18 °C. Spherical millimeter-sized organogel beads with a polydispersity of less than 10% were obtained. The particles display a two phase morphology indicating that both cryogelation and reaction-induced phase separation mechanisms are operative during the formation of the porous structures. The beads exhibit moduli of elasticity of 1-4 kPa, much larger than the moduli of conventional nonporous organogel beads formed at 20 °C. The gel particles also exhibit fast responsivity against the external stimulus (solvent change) due to their large pore volumes (4-7 ml/g). The gel beads prepared at −18 °C are very tough and can be compressed up to about 100% strain during which almost all the solvent content of the particles is released without any crack development. The sorption-squeezing cycles of the beads show that they can be used in separation processes in which the separated compounds can easily be recovered by compression of the beads under a piston.  相似文献   

19.
Poly(vinylidene fluoride) (PVDF) macroporous beads with diameter in the range of hundreds of micrometers were produced by batch polymerisation of vinylidene fluoride (VDF) in supercritical carbon dioxide (scCO2) using diethyl peroxydicarbonate (DEPDC) as a free radical initiator. The rate and type of stirring were found to influence strongly the morphology of polymers, and the results indicated that the shear force was the key factor. A low shear force and a suitable monomer concentration range at 6-8 mol/l were needed for the formation of PVDF macroporous beads. Scanning electron microscopy (SEM) was employed to characterize the polymer morphology, and Brunauer-Emmett-Teller (BET) method was used to analyze the surface area of the polymer macroporous beads. In addition, polydimethylsiloxane monomethylacrylate (PDMS-ma) and poly(1H,1H,2H,2H-perfluorooctyl methacrylate) (PFOMA) were found to be able to control the size of PVDF macroporous beads. We propose that the formation of PVDF macroporous beads results from the aggregation of semi-crystalline PVDF primary particles.  相似文献   

20.
Metal-chelating affinity beads have attracted increasing interest in recent years for protein purification. In this study, iminodiacetic acid (IDA) was covalently attached to the poly(glycidyl methacrylate) [PGMA] beads (1.6 μm in diameter). Cu(2+) ions were chelated via IDA groups on PGMA beads for affinity binding of hemoglobin (Hb) from human blood hemolysate. The PGMA beads were characterized by scanning electron microscopy (SEM). The PGMA-Cu(2+) beads (628 μmol/g) were used in the Hb binding-elution studies. The effects of Hb concentration, pH and temperature on the binding efficiency of PGMA-Cu(2+) beads were performed in a batch system. Non-specific binding of Hb to PGMA beads in the absence of Cu(2+) ions was very low (0.39 mg/g). The maximum Hb binding was 130.3 mg/g. The equilibrium Hb binding increased with increasing temperature. The negative change in Gibbs free energy (ΔG°<0) indicated that the binding of Hb on the PGMA-Cu(2+) beads was a thermodynamically favorable process. The ΔS and ΔH values were 102.2 J/mol K and -2.02 kJ/mol, respectively. Significant amount of the bound Hb (up to 95.8%) was eluted in the elution medium containing 1.0 M NaCl in 1 h. The binding followed Langmuir isotherm model with monolayer binding capacity of 80.3-135.7 mg/g. Consecutive binding-elution experiments showed that the PGMA-Cu(2+) beads can be reused almost without any loss in the Hb binding capacity. To test the efficiency of Hb depletion from blood hemolysate, eluted portion was analyzed by fast protein liquid chromatography. The depletion efficiency for Hb was above 97.5%. This study determined that the PGMA-Cu(2+) beads had a superior binding capacity for Hb compared to the other carriers within this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号