首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The translational anisotropy and rotational angular momentum polarization of a selection of rotational states of the O2 (a 1Deltag; v=0) photofragment formed from ozone photolysis at 248, 260, and 265 nm have been determined using the technique of resonance enhanced multiphoton ionization in combination with time of flight mass spectrometry. At 248 nm, the dissociation is well described as impulsive in nature with all rotational states exhibiting similarly large, near-limiting values for the bipolar moments describing their angular momentum alignment and orientation. At 265 nm, however, the angular momentum polarization parameters determined for consecutive odd and even rotational states exhibit clear differences. Studies at the intermediate wavelength of 260 nm strongly suggest that such a difference in the angular momentum polarization is speed dependent and this proposal is consistent with the angular momentum polarization parameters extracted and reported previously for longer photolysis wavelengths [G. Hancock et al., Phys. Chem. Chem. Phys. 5, 5386 (2003); S. J. Horrocks et al., J. Chem. Phys. 126, 044308 (2007)]. The alternation of angular momentum polarization for successive odd and even J states may be a consequence of the different mechanisms leading to the formation of the two O2 (a 1Deltag) Lambda doublets. Specifically, the involvement of out of plane parent rotational motion is proposed as the origin for the observed depolarization for the Delta- relative to the Delta+ state.  相似文献   

2.
The speed averaged translational anisotropy and electronic angular momentum polarization of the O(1D2) atomic fragment formed from the photodissociation of ozone in the atmospherically important long wavelength region of the Hartley band (298 to 320 nm) have been measured using resonance enhanced multiphoton ionization time of flight mass spectrometry. The translational anisotropy parameter, beta, is found to decline from 1.1 for photolysis at 300 nm to a minimum value of 0 at 310 nm which is the threshold for production of O(1D2) in conjunction with the O2(a 1Deltag v = 0) molecular cofragment. For photolysis wavelengths greater than 310 nm, O(1D2) is formed from the dissociation of internally excited ozone molecules. The corresponding beta parameters are markedly lower than for atomic fragments produced with the same speed from the photolysis of ground state ozone molecules. This result is consistent with two different pathways contributing to the photolysis of internally excited ozone at the longest wavelengths studied corresponding to initial internal excitation either in the symmetric or asymmetric stretching vibration. In addition, the polarization of the atomic angular momentum has been determined with the incoherent polarization parameters a0(2)(||) and a0(2)(_|) increasing from values of -0.53 and -0.62 at 300 nm to -0.37 and -0.19 at 317 nm, consistent with the increasing contribution from the photolysis of internally excited ozone as the dissociation wavelength lengthens. Evaluation of these alignment parameters allows the populations of the magnetic substrates, mj, to be determined. For example, for a photolysis wavelength of 303 nm the populations of mj = 0, +/- 1, +/- 2 are in the ratio of 0.36: 0.56: 0.08 and this ratio is essentially independent of the photolysis wavelength. The coherent contribution to the atomic polarization is quantified by the Re{a1(2)(||, _|)} and Im{a1(1)(||, _|)} parameters and these are found to vary from -0.21 and 0.21 at 300 nm to -0.04 and 0.24 at 313 nm, respectively.  相似文献   

3.
The translational anisotropy and the polarization of the electronic angular momentum of the O ((1)D2) fragment produced from the 298 nm photodissociation of ozone have been determined using resonance enhanced multiphoton ionization (REMPI) in conjunction with time-of-flight mass spectrometry (TOFMS). The translational anisotropy parameter beta, which is necessarily averaged over the O2 co-fragment rotational distribution, is measured to be 1.08 +/- 0.04. This is consistent with that expected for the (1)B2 <-- (1)A1 transition within an impulsive model if the tangential velocity associated with the zero point motion of the bend is constricted to opening the bond angle. Molecular frame polarization parameters of rank up to k = 4 have been extracted for the O ((1)D2) fragment and the calculated m(J) populations show a strong preference for the absolute value(m(J)) = 1 states. A small coherence term is also observed, a manifestation of the nuclear geometry of the dissociating molecule and the existence of possible non-adiabatic processes in the exit channel. The orientation associated with the mapping of the photon helicity onto the O ((1)D2) electronic angular momentum distribution was observed to have been quenched. However, the parameter gamma1', which describes the contribution to the orientation from a coherent superposition of a parallel and perpendicular excitation where the photofragment angular momentum lies perpendicular to both the recoil velocity and to the transition dipole moment, was determined to be -0.06.  相似文献   

4.
Polarized laser photolysis, coupled with resonantly enhanced multiphoton ionization detection of O(1D2) and velocity-map ion imaging, has been used to investigate the photodissociation dynamics of ozone at 193 nm. The use of multiple pump and probe laser polarization geometries and probe transitions has enabled a comprehensive characterization of the angular momentum polarization of the O(1D2) photofragments, in addition to providing high-resolution information about their speed and angular distributions. Images obtained at the probe laser wavelength of around 205 nm indicate dissociation primarily via the Hartley band, involving absorption to, and diabatic dissociation on, the B 1B2(3 1A1) potential energy surface. Rather different O(1D2) speed and electronic angular momentum spatial distributions are observed at 193 nm, suggesting that the dominant excitation at these photon energies is to a state of different symmetry from that giving rise to the Hartley band and also indicating the participation of at least one other state in the dissociation process. Evidence for a contribution from absorption into the tail of the Hartley band at 193 nm is also presented. A particularly surprising result is the observation of nonzero, albeit small values for all three rank K = 1 orientation moments of the angular momentum distribution. The polarization results obtained at 193 and 205 nm, together with those observed previously at longer wavelengths, are interpreted using an analysis of the long range quadrupole-quadrupole interaction between the O(1D2) and O2(1Deltag) species.  相似文献   

5.
The technique of resonance enhanced multiphoton ionization (REMPI) has been used in conjunction with time-of-flight mass spectrometry (TOFMS), to investigate the dynamics of ozone photolysis in the long wavelength region of the Hartley band (301-311 nm). Specifically, both the translational anisotropy and the rotational angular momentum orientation of the O(2) (a (1)Delta(g); nu=0, J=16-20) fragments have been measured as a function of photolysis wavelength. Within this region, the thermodynamic thresholds for the formation of these products in combination with O ((1)D(2)) are approached and passed, and consequently these studies have allowed an investigation into the effects on the dynamics of slowing fragment recoil velocities and the increasing importance of vibrationally mediated photolysis. The determined beta parameters for all the J states probed follow a similar trend, decreasing from a value typical for the initial (1)B(2)<--(1)A(1) excitation responsible for the Hartley band [for example, beta=1.40+/-0.12 for the O(2) (a (1)Delta(g); J=18) fragment], to a much lower value beyond the thermodynamic threshold for the fragment's production (for example, beta=0.63+/-0.19 for the J=18 fragment following photolysis at 311 nm). This trend, similar to that observed when probing the atomic fragment in a previous set of experiments, [Horrocks et al., J. Chem. Phys. 125, 133313 (2006); Denzer et al., Phys. Chem. Chem. Phys. 16, 1954 (2006)] is consistent with the photodissociation of vibrationally excited ozone molecules beyond the threshold wavelengths and we estimate approximately 1/3 of this to be from excitation in the nu(3) asymmetric stretching mode. These observations are substantiated by the values of the beta(0) (2)(2,1) orientation moment measured, which for photolysis at 301 nm are negative, indicating that a bond opening mechanism provides the key torque for the departing O(2) fragment. The orientation moment becomes positive again for photolysis beyond threshold, however, as the increasing impulsive dissociation again begins to dominate the nature of the rotation of the departing molecular fragment. In addition, a (2+2) REMPI scheme has been utilized to probe the O(2) (a (1)Delta(g)) "low" J fragments, where the majority of the population resides following photolysis within this region. The REMPI-TOFMS technique has been used to confirm the rotational character of a spectral feature through examination of the signal line shapes obtained using different experimental geometries. The dynamical information subsequently obtained, probing the "low" J O(2) (a (1)Delta(g)) fragments on these rotational transitions, has unified previous translational anisotropy results obtained by detecting the O ((1)D(2)) atomic fragment with data for the O(2) (a (1)Delta(g); J=16-20) fragments.  相似文献   

6.
Speed distributions, and spatial anisotropy and atomic angular momentum polarization parameters have been determined for the O((3)P(J)) products following the photodissociation of ozone at 248 and 226 nm using velocity map ion imaging. The data have been interpreted in terms of two dissociation mechanisms that give rise to fast and slow products. In both cases, excitation is believed to occur to the B state. Consistent with previous interpretations, the speed distributions, translational anisotropy parameters, and angular momentum polarization moments support the assignment of the major pathway to curve crossing from the B to the repulsive R surface, generating fast fragments in a wide range of vibrational states. For the slow fragments, it is proposed that following excitation to the B state, the system crosses onto the A state. The crossing seam is only accessible to molecules that are highly vibrationally excited and therefore possess modest recoil speeds. Once on the A state, the wavepacket is thought to funnel through a conical intersection to the ground state. The velocity distributions, spatial anisotropy parameters, spin-orbit populations and polarization data each lend support to this mechanism.  相似文献   

7.
The dissociation of OCS has been investigated subsequent to excitation at 248 nm using velocity map ion imaging. Speed distributions, speed dependent translational anisotropy parameters, and the atomic angular momentum orientation and alignment are reported for the channel leading to S((3)P(J)). The speed distributions and beta parameters are in broad agreement with previous work and show behavior that is highly sensitive to the S-atom spin-orbit state. The data are shown to be consistent with the operation of at least two triplet production mechanisms. Interpretation of the angular momentum polarization data in terms of an adiabatic picture has been used to help identify a likely dissociation pathway for the majority of the S((3)P(J)) products, which strongly favors production of J=2 fragment atoms, correlated, it is proposed, with rotationally hot and vibrationally cold CO cofragments. For these fragments, optical excitation to the 2 (1)A(') surface is thought to constitute the first step, as for the singlet dissociation channel. This is followed by crossing, via a conical intersection, to the ground 1 (1)A(') state, from where intersystem crossing occurs, populating the 1 (3)A(')1 (3)A(")((3)Pi) states. The proposed mechanism provides a qualitative rationale for the observed spin-orbit populations, as well as the S((3)P(J)) quantum yield and angular momentum polarization. At least one other production mechanism, leading to a more statistical S-atom spin-orbit state distribution and rotationally cold, vibrationally hot CO cofragments, is thought to involve direct excitation to either the (3)Sigma(-) or (3)Pi states.  相似文献   

8.
In the following paper we present translational anisotropy and angular momentum polarization data for O((3)P(1)) and O((3)P(2)) products of the photodissociation of molecular oxygen at 193 nm. The data were obtained using polarized laser photodissociation coupled with resonantly enhanced multiphoton ionization and velocity-map ion imaging. Under the jet-cooled conditions employed, absorption is believed to be dominated by excitation into the Herzberg continuum. The experimental data are compared with previous experiments and theoretical calculations at this and other wavelengths. Semi-classical calculations performed by Groenenboom and van Vroonhoven [J. Chem. Phys, 2002, 116, 1965] are used to estimate the alignment parameters arising from incoherent excitation and dissociation and these are shown to agree qualitatively well with the available experimental data. Following the work of Alexander et al. [J. Chem. Phys, 2003, 118, 10566], orientation and alignment parameters arising from coherent excitation and dissociation are modelled more approximately by estimating phase differences generated subsequent to dissociation via competing adiabatic pathways leading to the same asymptotic products. These calculations lend support to the view that large values of the coherent alignment moments, but small values of the corresponding orientation moments, could arise from coherent excitation of (and subsequent dissociation via) parallel and perpendicular components of the Herzberg I, II and III transitions.  相似文献   

9.
Resonance-enhanced multiphoton ionization and velocity map imaging of the Cl(2P(3/2)0) fragments of BrCl photolysis at 467.16 nm have been used to obtain a complete set of orientation parameters (with ranks K = 1 and 3) describing the polarization of the electronic angular momentum. The experiments employ two geometries distinguished only by the circular or linear polarization of the photolysis laser beam. Normalized difference images constructed from the data accumulated using a right or left circularly polarized probe-laser beam, counterpropagating with the photolysis laser, were fitted to basis images corresponding to contributions from various odd-rank anisotropy parameters. Expressions are given for the difference images in terms of the K = 1 and 3 anisotropy parameters, which describe coherent and incoherent parallel and perpendicular excitation and dissociation mechanisms. The nonzero values of the anisotropy parameters are indicative of nonadiabatic dissociation dynamics, with likely contributions from flux on the A 3Pi1,B 3Pi(0+),C 1Pi1, and X 1sigma+(0+) states as well as one further omega = 1 state, all of which correlate adiabatically to Cl(2P(3/2)0) + Br(2P(3/2)0) photofragments. The magnitudes of the parameters depend both on the amplitudes of dissociative flux in these states, and also on the phases accumulated by the nuclear wave functions for different dissociation pathways.  相似文献   

10.
利用离子速度成像方法, 研究n-C7H15Br分子在231~239 nm范围内几个波长处的光解离动力学. 通过同一束激光经(2+1)共振多光子电离(REMPI)过程探测光解碎片Br(2P3/2)和Br*(2P1/2), 得到了不同激光波长处的离子速度分布图像, 从而获得C7H15Br光解产物的能量分配和角度分布. 结合各向异性参数和量子产率, 计算了n-C7H15Br分子在234 nm波长下不同解离通道的比例. 实验表明光解产物的能量分配可以用冲击模型中的软碰撞模型来解释. 实验还发现, 各向异性参数β(Br*)的值对光波长变化很敏感, 这是由电子激发态的绝热和非绝热过程决定的.  相似文献   

11.
The dissociation of OCS has been investigated subsequent to excitation at 248 nm. Speed distributions, speed dependent translational anisotropy parameters, angular momentum alignment, and orientation are reported for the channel leading to S((1)D(2)). In agreement with previous experiments, two product speed regimes have been identified, correlating with differing degrees of rotational excitation in the CO coproducts. The velocity dependence of the translational anisotropy is also shown to be in agreement with previous work. However, contrary to previous interpretations, the speed dependence is shown to primarily reflect the effects of nonaxial recoil and to be consistent with predominant excitation to the 2 (1)A(') electronic state. It is proposed that the associated electronic transition moment is polarized in the molecular plane, at an angle greater than approximately 60 degrees to the initial linear OCS axis. The atomic angular momentum polarization data are interpreted in terms of a simple long-range interaction model to help identify likely surfaces populated during dissociation. Although the model neglects coherence between surfaces, the polarization data are shown to be consistent with the proposed dissociation mechanisms for the two product speed regimes. Large values for the low and high rank in-plane orientation parameters are reported. These are believed to be the first example of a polyatomic system where these effects are found to be of the same order of magnitude as the angular momentum alignment.  相似文献   

12.
Velocity-map ion imaging (VMI) has been used to study the angular distribution of the NO fragment generated in the photodissociation of NO(2) at a variety of photolysis wavelengths. Images were recorded for the channels NO (2)Pi(1/2) (v = 0, J= 3/2, 11/2 and 21/2) + O ((3)P(2,1)), for excitation energies ranging from the onset (E(avl)/hc = 0 cm(-1)) to E(avl)/hc approximately 900 cm(-1). The angular anisotropy parameter beta was obtained as a function of available energy. Photofragment multiphoton ionization (PHOMPI) spectra were also recorded in the energy range E(avl)/hc = 0-300 cm(-1) for each of these channels. Large fluctuations of beta as a function of E(avl) were found in all observed dissociation channels. These variations are discussed in terms of the lifetimes of the originally photoexcited overlapping resonances in the A(2)B(2) state of NO(2), the dynamics of which are strongly influenced by nonadiabatic coupling with the X[combining tilde](2)A(1) state. The potential use of this photolysis process for production of cold oxygen atoms is discussed.  相似文献   

13.
Photodissociation dynamics of D(2)O in the B?((1)A(1)) state at different photolysis wavelengths have been investigated using the D-atom Rydberg "tagging" time-of-flight (TOF) technique, in combination with a tunable vacuum ultraviolet photolysis light source. TOF spectra of the D-atom product from the D(2)O photodissociation in both parallel and perpendicular polarizations have been measured. Product kinetic energy distributions and angular distributions have been derived from these TOF spectra. From these distributions, internal state distributions of the OD product as well as the OD quantum state specific angular anisotropy parameters have been derived. Two product channels governed by distinct dissociation dynamics have been clearly observed in the B?((1)A(1)) state photodissociation: ground electronic state radical product OD(X (2)Π) + D and excited electronic state OD(A (2)Σ(+)) + D. The OD(A) + D channel proceeds via adiabatic pathway on the B?((1)A(1)) state surface, producing rovibrational excitation in the OD(A) product, while the OD(X) + D channel is generated through nonadiabatic pathway mainly via conical intersections between the B?((1)A(1)) and the X?((1)A(1)) state surfaces. Due to strong angular force induced by the conical intersections, the OD(X) product is extremely hot in the rotational excitation close to the energy limit (N ~ 50 for v = 0). However, the vibrational excitation is cold in the OD(X) product with dominant population in the ground vibrational state v = 0. Detailed experimental results at different photolysis wavelengths show that at higher energy the unstable periodic orbit, from which dissociation starts, on the B? state has stronger excitation degree of the OD internal state. The negative angular anisotropy parameters of the OD(A) products suggest that the angular forces in this adiabatic dissociation pathway from these periodic orbits have changed the original angular distribution of the D(2)O molecule excited by the B?((1)A(1))←X?((1)A(1)) parallel transition.  相似文献   

14.
We measured angular-anisotropy parameters beta(E(t)) of fragments from photolysis of ethene and four isotopic variants at 157 nm using photo-fragment translational spectroscopy and selective photoionization. The averaged beta value of products ranges from -0.17 to 0.10, depending on dissociation pathways. Angular distributions of atomic hydrogen produced from C(2)H(4) and C(2)D(4) are isotropic. For dissociation into C(2)H(2) + H(2), beta has a small negative value whereas dissociation into C(2)D(2) + D(2) has an isotropic angular distribution. The photolysis of dideuterated ethene reveals site and isotopic effects on the angular distributions of products; products H(2), HD, and D(2) from photolysis of 1,1-CH(2)CD(2) have negative, nearly zero, and positive values of beta, respectively. Molecular hydrogen from photolysis of 1,2-cis-CHDCHD has a negative beta value and the anisotropy has a trend D(2) > H(2) > HD. Photolysis of 1,2-trans-CHDCDH produced a result similar to photolysis of 1,2-cis-CHDCHD for the angular anisotropy of molecular hydrogen except slightly more isotropic. A calculation of optimized geometries of ethene in the ground electronic state and pertinent transition structures enables a qualitative interpretation of the site and isotopic effects on the angular anisotropy of products. We deduce that the photoexcited state of ethene at 157 nm has a major character (1)B(1u) that produces a transition dipolar moment parallel to the C=C bond.  相似文献   

15.
We report an imaging study of nitric acid (HNO(3)) photodissociation near 204 nm with detection of O((1)D), one of the major decomposition products in this region. The images show structure reflecting the vibrational distribution of the HONO coproduct and significant angular anisotropy that varies with recoil speed. The images also show substantial alignment of the O((1)D) orbital, which is analyzed using an approximate treatment that reveals that the polarization is dominated by incoherent, high order contributions. The results offer additional insight into the dynamics of the dissociation of nitric acid through the S(3) (2 (1)A(')) excited state, resolving an inconsistency in previously reported angular distributions, and pointing the way to future studies of the angular momentum polarization.  相似文献   

16.
Velocity-map ion imaging has been applied to the photodissociation of NO(2) via the first absorption band at 308 nm using (2 + 1) resonantly enhanced multiphoton ionization detection of the atomic O((3)P(J)) products. The resulting ion images have been analyzed to provide information about the speed distribution of the O((3)P(J)) products, the translational anisotropy, and the electronic angular momentum alignment. The atomic speed distributions were used to provide information about the internal quantum-state distribution in the NO coproducts. The data were found to be consistent with an inverted NO vibrational quantum-state distribution, and thereby point to a dynamical, as opposed to a statistical dissociation mechanism subsequent to photodissociation at 308 nm. Surprisingly, at this wavelength the O-atom electronic angular momentum alignment was found to be small. Probe-only ion images obtained under a variety of molecular-beam backing-pressure conditions, and corresponding to O atoms generated in the photodissociation of either the monomer, NO(2), or the dimer, N(2)O(4), at 226 nm, are also reported. For the monomer, where 226 nm corresponds to excitation into the second absorption band, the kinetic-energy release distributions are also found to indicate a strong population inversion in the NO cofragment, and are shown to be remarkably similar to those previously observed in the wavelength range of 193-248 nm. Mechanistic implications of this result are discussed. At 226 nm it has also been possible to observe directly O atoms from the photodissociation of the dimer. The O-atom velocity distribution has been analyzed to provide information about its production mechanism.  相似文献   

17.
The ion-pair dissociation dynamics of N(2)O -->(XUV) N(2)(+)(X (2)Sigma(g)(+), v) + O(-)((2)P(j)) at 16.248, 16.271, 16.389, and 16.411 eV have been studied using the velocity map imaging method and tunable XUV laser. The electronic structures of the ion-pair states have been studied by employing the ab initio quantum chemical calculation. The translational energy distributions and the angular distributions of the photofragments have been measured. The results show that about 40% of available energies are transformed into the translational energies, and the first excited vibrational states are populated most strongly for all four excitation energies. The anisotropy parameters beta are approximately 1. The ab initio calculations at the level of CASSCF6-311++g(3df) show that the equilibrium geometries of the ion-pair states are nonlinear with bond lengths R(N-N) = 1.10 A, R(N-O) = 2.15 A, and bond angle N-N-O = 103 degrees, respectively. The ion-pair states are formed by electron migration from the bonding sigma orbital of N[triple bond]N to the antibonding sigma orbital localized primarily on the O atom. Combining the experimental and theoretical results, it is concluded that the ion-pair dissociation occurs via predissociation of Rydberg states with (1)Sigma(+) symmetry, which converges to the ion-core N(2)O(+)(A (2)Sigma(+)).  相似文献   

18.
The H+N3 channel in the ultraviolet photodissociation of HN3 has been investigated from 190 nm to 248 nm using the high-n Rydberg H-atom time-of-°ight technique. Product translational energy distributions as well as product angular anisotropy parameters were determined for the H+N3 channel at di?erent photolysis wavelengths. N3 vibrational state distribution has also been derived from the product translational energy distribution at these wavelengths. Above photolysis wavelength 225 nm, HN3 predominantly dissociatethrough the repulsive state. Below 225 nm, a new slow channel starts to appear at 220 nm in addition to the existing channel. This channel is attributed to a ring closure dissociation channel to produce the cyclic N3 product. As photolysis energy increases, this new channel becomes more important.  相似文献   

19.
Photodissociation dynamics of DNCO+hv→D+NCO at photolysis wavelengths between 200 and 235 nm have been studied using the D-atom Rydberg tagging time-of-flight technique. Product translational energy distributions and angular distributions have been determined. Nearly statistical distribution of the product translational energy with nearly isotropic angular distribution was observed at 210-235 nm, which may come from the predissociation pathway of internal conversion from S1 to S0 state followed by decomposition on S0 surface. At shorter photolysis wavelengths, in addition to the statistical distribution, another feature with anisotropic angular distribution appears at high translational energy region, which can be attributed to direct dissociation on S1 surface. Compared with HNCO, the direct dissociation pathway for DNCO photodissociation opens at higher excitation energy. According to our assignment of the NCO internal energy distribution, dominantly bending and a little stretching excited NCO was produced via both dissociation pathways.  相似文献   

20.
The complete angular momentum distributions and vector correlation coefficients (orientation and alignment) of ground state I((2)P(32)) and excited state I((2)P(12)) atoms resulting from the photodissociation of HI have been computed as a function of photolysis energy. The orientation and alignment parameters a(Q) ((K))(p) that describe the coherent and incoherent contributions to the angular momentum distributions from the multiple electronic states accessed by parallel and perpendicular transitions are determined using a time-dependent wave packet treatment of the dissociation dynamics. The dynamics are based on potential energy curves and transition dipole moments that have been reported previously [R. J. LeRoy, G. T. Kraemer, and S. Manzhos, J. Chem. Phys. 117, 9353 (2002)] and used to successfully model the scalar (total cross section and branching fraction) and lowest order vector (anisotropy parameter beta) properties of the photodissociation. Predictions of the a(Q) ((K))(p), parameters for the isotopically substituted species DI are reported and contrasted to the analogous HI results. The resulting polarization for the corresponding H/D partners are also determined and demonstrate that both H and D atoms produced can be highly spin polarized. Comparison of these predictions for HI and DI with experimental measurement will provide the most stringent test of the current model for the electronic structure and the interpretation of the dissociation based on noncoupled excited state dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号