首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Two very rare cases of barium boryloxides, the homoleptic [Ba(OB{CH(SiMe3)2}2)2⋅C7H8] and the heteroleptic [{LONO4}BaOB{CH(SiMe3)2}2] stabilised by the multidentate aminoetherphenolate {LONO4}, are presented, and their structural properties are discussed. The electron-deficient [Ba(OB{CH(SiMe3)2}2)2⋅C7H8] shows, in particular, resilient η6-coordination of the toluene molecule. Together with its amido parents [Ba{N(SiMe3)2}2⋅thf2] and [Ba{N(SiMe3)2}2]2, this complex catalyses the fast and chemoselective dehydrocoupling of borinic acids R2BOH and hydrosilanes HSiR′3, yielding borasiloxanes R2BOSiR′3 in a controlled fashion. The assessment of substrate scope indicates that, for now, the reaction is limited to bulky borinic acids. Kinetic analysis shows that the rate-limiting step of the catalytic manifold traverses a dinuclear transition state. A detailed mechanistic scenario is proposed on the basis of DFT computations, the results of which are fully consistent with experimental data. It consists of a stepwise process with rate-determining nucleophilic attack of a metal-bound O-atom onto the incoming hydrosilane, involving throughout dinuclear catalytically active species.  相似文献   

2.
Exploiting chemical cooperation between Na and Fe(II) within the bimetallic base [dioxane ⋅ NaFe(HMDS)3] ( I ), (dioxane=1,4-dioxane, HMDS=N(SiMe3)2) the selective ferration of fluorobenzene, 1-fluoronaphthalene, 1,4-difluorobenzene, 1,2,4-trifluorobenzene, 1,3,5-trifluorobenzene, 1-bromo-3,5-difluorobenzene, 3-fluoroanisole and 3,5-difluoroanisole has been realized, affording sodium ferrates [dioxane ⋅ Na(HMDS)(2-F-C6H4)Fe(HMDS)] ( 1 ), [dioxane ⋅ Na(HMDS)(2-F-C10H6)Fe(HMDS)] ( 2 ), [dioxane ⋅ {Na(HMDS)(2,5-F2-C6H3)Fe(HMDS)}2] ( 3 ), [dioxane ⋅ {Na(HMDS)(2,3,6-F3-C6H2)Fe(HMDS)}2] ( 4 ), [(dioxane)1.5 ⋅ Na(HMDS)(2,4,6-F3-C6H2)Fe(HMDS)]2 ( 5 ), [(dioxane)1.5 ⋅ {Na(HMDS)(4-Br-2,6-F2-C6H2)Fe(HMDS)2] ( 6 ), [{(dioxane)2 ⋅ Na2Fe(HMDS)2(2-methoxy-6-F-C6H3)}+{Fe(HMDS)3}] ( 7 ) and [dioxane ⋅ {Na(HMDS)(4-methoxy-2,6-F2-C6H2)Fe(HMDS)}2] ( 8 ), respectively. Reactions take place under mild reaction conditions, with excellent control of the selectivity and no competing C−F bond activation is observed. Showcasing complex polymeric arrangements in some cases, the structures of compounds 1 – 8 have been determined by X-ray crystallographic studies. In all cases, the Fe(II) centers occupy the position in the relevant fluoroarene that was previously filled by a proton, confirming that these metallations are actually ferration processes whereas the Na atoms prefer to form Na⋅⋅⋅F dative interactions. Compounds 1 – 8 are thermally stable and do not undergo benzyne formation (through NaF elimination) and their formation contrasts with the inertness of Fe(HMDS)2 which fails to act as a base to metallate fluoroarenes.  相似文献   

3.
The three-coordinate aluminum cations ligated by N-heterocyclic carbenes (NHCs) [(NHC) ⋅ AlMes2]+[B(C6F5)4] (NHC=IMeMe 4 , IiPrMe 5 , IiPr 6 , Mes=2,4,6-trimethylphenyl) were prepared via hydride abstraction of the alanes (NHC) ⋅ AlHMes2 (NHC=IMeMe 1 , IiPrMe 2 , IiPr 3 ) using [Ph3C]+[B(C6F5)4] in toluene as hydride acceptor. If this reaction was performed in diethyl ether, the corresponding four-coordinate aluminum etherate cations [(NHC) ⋅ AlMes2(OEt2)]+ [B(C6F5)4] 7 – 9 (NHC=IMeMe 7 , IiPrMe 8 , IiPr 9 ) were isolated. According to a theoretical and experimental assessment of the Lewis-acidity of the [(IMeMe) ⋅ AlMes2]+ cation is the acidity larger than that of B(C6F5)3 and of similar magnitude as reported for Al(C6F5)3. The reaction of [(IMeMe) ⋅ AlMes2]+[B(C6F5)4] 4 with the sterically less demanding, basic phosphine PMe3 afforded a mixed NHC/phosphine stabilized cation [(IMeMe) ⋅ AlMes2(PMe3)]+[B(C6F5)4] 10 . Equimolar mixtures of 4 and the sterically more demanding PCy3 gave a frustrated Lewis-pair (FLP), i.e., [(IMeMe) ⋅ AlMes2]+[B(C6F5)4]/PCy3 FLP-11 , which reacts with small molecules such as CO2, ethene, and 2-butyne.  相似文献   

4.
The new methylidene trinickel cluster complexes, [RCNi35-C5H53] (R  CMe3 or SiMe3) and [Me3SiCNi35-C5H5)2(η5-C5H4CH2SiMe3)] have been isolated in low yield from reactions between nickelocene and the corresponding alkyllithium reagents, RCH2Li. The compounds [RCNi35-C5H5)3] (R  Ph, CMe3 or SiMe3) have also been obtained by treatment of the σ-alkylnickel complexes [(η5-C5H5)Ni(CH2R)(PPh3)] with n-BuLi in the presence of an excess of nickelocene, but under similar conditions [(η5-C5H5)Ni(CH2C1OH7-2)-(PPh3)] (where C1OH7-2  2-naphthyl) failed to give [2-C1OH7CNi35-C5H5)3]. The attempted synthesis of [(η5-C5H5)Ni(CH2CCH)(PPh3)] from [(η5-C5H5)-NiBr(PPh3)] and CHCCH2MgBr gave only [(η5-C5H5)Ni(CCMe)(PPh3)] by an unusual rearrangement reaction.  相似文献   

5.
Reaction of Ba[N(SiMe3)2]2 with PhSiH3 in toluene gave simple access to the unique Ba hydride cluster Ba7H7[N(SiMe3)2]7 that can be described as a square pyramid spanned by five Ba2+ ions with two flanking BaH[N(SiMe3)2] units. This heptanuclear cluster is well soluble in aromatic solvents, and the hydride 1H NMR signals and coupling pattern suggests that the structure is stable in solution. At 95 °C, no coalescence of hydride signals is observed but the cluster slowly decomposes to undefined barium hydride species. The complex Ba7H7[N(SiMe3)2]7 is a very strong reducing agent that already at room temperature reacts with Me3SiCH=CH2, norbornadiene, and ethylene. The highly reactive alkyl barium intermediates cannot be observed and deprotonate the (Me3Si)2N ion, as confirmed by the crystal structure of Ba14H12[N(SiMe3)2]12[(Me3Si)(Me2SiCH2)N]4.  相似文献   

6.
The reaction of the heteroleptic Nd(III) iodide, [Nd(L′)(N″)(μ-I)] with the potassium salts of primary aryl amides [KN(H)Ar′] or [KN(H)Ar*] affords heteroleptic, structurally characterised, low-coordinate neodymium amides [Nd(L′)(N″)(N(H)Ar′)] and [Nd(L′)(N″)(N(H)Ar*)] cleanly (L′ = t-BuNCH2CH2[C{NC(SiMe3)CHNt-Bu}], N″ = N(SiMe3)2, Ar′ = 2,6-Dipp2C6H3, Dipp = 2,6-Pri2C6H3, Ar* = 2,6-(2,4,6-Pri3C6H2)2C6H3). The potassium terphenyl primary amide [KN(H)Ar*] is readily prepared and isolated, and structurally characterised. Treatment of these primary amide-containing compounds with alkali metal alkyl salts results in ligand exchange to give alkali metal primary amides and intractable heteroleptic Nd(III) alkyl compounds of the form [Nd(L′)(N″)(R)] (R = CH2SiMe3, Me). Attempted deprotonation of the Nd-bound primary amide in [Nd(L′)(N″)(N(H)Ar*)] with the less nucleophilic phosphazene superbase ButNP{NP(NMe2)3}3 resulted in indiscriminate deprotonations of peripheral ligand CH groups.  相似文献   

7.
[Rh(η5-C5H5)(C3S5)] and [Rh(η5-C5Me5)(C3S5)]2 [C3S52−=4,5-disulfanyl-1,3-dithiole-2-thionate(2-)] were prepared by reactions of [NMe4]2[C3S5] with [Rh(η5-C5H5)Cl2]2 and [Rh(η5-C5Me5)Cl2]2, respectively. Their X-ray crystal structural analyses revealed a monomeric form for the former complex and a dimeric geometry containing bridging S-Rh-S bonds for the latter in the solid state. They were reacted with bromine to afford [RhBr(L)(C3S5)] (L=η5-C5H5 and η5-C5Me5) with the Rh-Br bond and one electron-oxidation on the C3S5 ligand. ESR spectra and spin densities for these oxidized species are discussed.  相似文献   

8.
Alkali-metal ferrates containing amide groups have emerged as regioselective bases capable of promoting Fe−H exchanges of aromatic substrates. Advancing this area of heterobimetallic chemistry, a new series of sodium ferrates is introduced incorporating the bulky arylsilyl amido ligand N(SiMe3)(Dipp) (Dipp=2,6-iPr2-C6H3). Influenced by the large steric demands imposed by this amide, transamination of [NaFe(HMDS)3] (HMDS=N(SiMe3)2) with an excess of HN(SiMe3)(Dipp) led to the isolation of heteroleptic [Na(HMDS)2Fe{N(SiMe3)Dipp}] ( 1 ) resulting from the exchange of just one HMDS group. An alternative co-complexation approach, combining the homometallic metal amides [NaN(SiMe3)Dipp] and [Fe{N(SiMe3)Dipp}2] induces lateral metallation of one Me arm from the SiMe3 group in the iron amide furnishing tetrameric [NaFe{N(SiCH2Me2)Dipp}{N(SiMe3)Dipp}]4 ( 2 ). Reactivity studies support that this deprotonation is driven by the steric incompatibility of the single metal amides rather than the basic capability of the sodium reagent. Displaying synergistic reactivity, heteroleptic sodium ferrate 1 can selectively promote ferration of pentafluorobenzene using one of its HMDS arms to give heterotrileptic [Na{N(SiMe3)Dipp}(HMDS)Fe(C6F5)] ( 4 ). Attempts to deprotonate less activated pyridine led to the isolation of NaHMDS and heteroleptic Fe(II) amide [(py)Fe{N(SiMe3)Dipp}(HMDS)] ( 5 ), resulting from an alternative redistribution process which is favoured by the Lewis donor ability of this substrate.  相似文献   

9.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

10.
The reaction of fumaryl fluoride with the superacidic solutions XF/MF5 (X=H, D; M=As, Sb) results in the formation of the monoprotonated and diprotonated species, dependent on the stoichiometric ratio of the Lewis acid to fumaryl fluoride. The salts [C4H3F2O2]+[MF6] (M=As, Sb) and [C4H2X2F2O2]2+([MF6])2 (X=H, D; M=As, Sb) are the first examples with a protonated acyl fluoride moiety. They were characterized by low-temperature vibrational spectroscopy. Low-temperature NMR spectroscopy and single-crystal X-ray structure analyses were carried out for [C4H3F2O2]+[SbF6] as well as for [C4H4F2O2]2+([MF6])2 (M=As, Sb). The experimental results are discussed together with quantum chemical calculations of the cations [C4H4F2O2 ⋅ 2 HF]2+ and [C4H3F2O2 ⋅ HF]+ at the B3LYP/aug-cc-pVTZ level of theory. In addition, electrostatic potential (ESP) maps combined with natural population analysis (NPA) charges were calculated in order to investigate the electron distribution and the charge-related properties of the diprotonated species. The C−F bond lengths in the protonated dication are considerably reduced on account of the +R effect.  相似文献   

11.
[MoCl(CO)35-C5H5)] on photolysis with allyl or crotyl halides C5H4RX gives MoIV complexes [MoX2(CO)(η3-C3H4R)(η5-C5H5)] (R = H, X = Cl, Br, I; R = Me, X = Cl, Br). [WCl(CO)35-C5H5)] under similar conditions gives trihalides [WX3(CO)25-C5H5)] (X = Cl, Br) on reaction with C3H5Cl and C3H5Br while [WCl(CO)35-C5H4SiMe3)] and [CrI(CO)35-C5H5)] react with allyl chloride to give [WCl3(CO)25-C5H4SiMe3)] and [CrCl25-C5H5)] respectively.  相似文献   

12.
The intense purple colored bi- and trimetallic complexes {Ti}(CH2SiMe3)[CC(η6-C6H5)Cr(CO)3] (3) ({Ti}=(η5-C5H5)2Ti) and [Ti][CC(η6-C6H5)Cr(CO)3]2 (5) {[Ti]=(η5-C5H4SiMe3)2Ti}, in which next to a Ti(IV) center a Cr(0) atom is present, are accessible by the reaction of Li[CC(η6-C6H5)Cr(CO)3] (2) with {Ti}(CH2SiMe3)Cl (1) or [Ti]Cl2 (4) in a 1:1 or 2:1 molar ratio. The chemical and electrochemical properties of 3, 5, {Ti}(CH2SiMe3)(CCFc) [Fc=(η5-C5H5)Fe(η5-C5H4)] and [Ti][(CC)nMc][(CC)mM′c] [n, m=1, 2; n=m; nm; Mc=(η5-C5H5)Fe(η5-C5H4); M′c=(η5-C5H5)Ru(η5-C5H4); Mc=M′c; Mc≠M′c] will be comparatively discussed.  相似文献   

13.
Preparation of Dithiatetrazocine and Secondary Reactions Li[PhCN2(SiMe3)2] ( 1 ) or PhCN2(SiMe3)3 ( 3 ) react with SCl2 to give in good yields the dithiatetrazocine PhC(NSN)2CPh ( 2 ). By analogy, p-MeC6H4C(NSN)2CC6H4Me-p ( 7 ), p-NO2C6H4C(NSN)2-CC6H4NO2-p ( 8 ), and p-CF3C6H4C(NSN)2CC6H4CF3-p ( 9 ) are obtained from the reaction of p-MeC6H4CN2(SiMe3)3 ( 4 ), Li[p-NO2-C6H4CN2(SiMe3)2] ( 5 ), und Li[p-CF3C6H4CN2(SiMe3)2] ( 6 ) with SCl2. Reaction of 2 /LiCl with AgAsF6 in liquid SO2 leads to [PhCN2S2]+[AsF6] ( 10 ) and 3[PhCN2S2]+2[AsF6]Cl ( 11 ). The structures of 10 and 11 are confirmed by X-ray analyses.  相似文献   

14.
Cyclic bis(amido)tin(II) compounds 1,2- [R = SiMe3] ( 4 ), SiMe2But ( 5 ) and CH2But ( 6 )], as well as ( 4 )2(μ-tmeda) 7 have been obtained either from (i) the corresponding dilithium compound 1,2-C6H4[N(R)Li]2 1–3 and SnCl2 for 4–6 , respectively, (or for 4 ) 2 1 + [Sn(μ-Cl){N(SiMe3)2}]2; or (ii) 1,2-C6H4[N(H)R]2 + Sn[N(SiMe3)2]2 for 4–6 ; or for 7 from 4 and tmeda. Compounds 4–6 are monomeric, yellow, thermochromic (becoming redder on heating), diamagnetic, crystalline and are lipophilic and sublimable in vacuo. Compound 7 is colourless. The molecular structures of 6 and 7 have been determined from single crystal X-ray diffraction data. Compound 6 crystallises in bimolecular aggregates, in which there is a weak η-C6 … Sn contact.  相似文献   

15.
Copper(I) chloride reacted with lithium ketimides to form tetrameric homoleptic copper(I) ketimide complexes, [Cu(N=CR2)]4, where R = t-Bu or Ph. Mesityl copper reacted with excess 1-trimethylsilylmethyl-2,2,-dimethylhydrazine to give the mixed ligand complex (2,4,6-C6Me3H2)Cu4[N(SiMe3)NMe2]3. Single-crystal X-ray crystallographic studies revealed that the three complexes have eight-member ring structures in which the ring has a hinged or butterfly shape. Although an eight-member ring structure is common for copper(I) amido, alkyl, and aryl clusters, the structure of [Cu(N=C-t-Bu2)]4 is unusual because the hinge angle is significantly smaller than is common, resulting in short Cu···Cu contacts compared to related complexes.  相似文献   

16.
Antimony is reduced when [SbPh2BrO]2 is treated with Na[Mo(CO)3(η5-C5H5)] to produce [μ-SbPh2]2[Mo(CO)2(η5-C5H5)]2. A structure determination shows diphenylstibido groups bridging between two Mo(CO)2(η5-C5H5) moieties giving a central ‘butterfly’ shaped Sb2Mo2 ring. The cyclopentadiene rings are trans to each other and Mo–Sb and Sb–Sb separations are both short. An iron analogue could not be obtained from [SbPh2BrO]2 and Na[Fe(CO)2(η5-C5H5)] but a mixture of SbPh[Fe(CO)2(η5-C5H5)]2 and SbPh2[Fe(CO)2(η5-C5H5)] was obtained using SbPh2Cl. An X-ray structure for SbPh[Fe(CO)2(η5-C5H5)]2 shows an open stibinidine structure.  相似文献   

17.
The square-planar rhodium(I) complexes trans-[RhCl(=CPh2)(L)2] (L = SbiPr3, PiPr3, PPh3) react with LiC5H4SiMe3 to give the halfsandwich type compounds [(η5-C5H4SiMe3)Rh(=CPh2)(L)] 7–9 in good to excellent yields. While the phosphine complexes 8 and 9 are rather inert toward Lewis bases, the stibine derivative 7 reacts with CO, CNtBu and PMe3 to afford the corresponding substitution products [(η5-C5H4SiMe3)Rh(=CPh2)(L′] 10–12. In contrast, the reaction of 7 with C2H4 leads to the displacement of the carbene ligand and to the formation of the ethene complex [(η5-C5H4SiMe3)Rh(C2H4)(SbiPr3)] 14 together with the C−C coupling product Ph2C=CHCH313. Upon treatment of 9 (L = PPh3) with an equimolar amount of HCl, the chloro(hydrido)rhodium(III) compound [{η5-C5H3)(CHPH2)(SiMe3)}RhHCl(PPh3)] 15 is formed. With an excess of HCl, a mixture of two products is obtained, one of which, with the composition [η5-C5H4)CHPh2)RhCl2(PPH3)] 17 has been independently prepared from η5-C5H5)Rh(=CPh2)(PPh3] 18 and 2 equiv of HCl.  相似文献   

18.
The first soluble barium boryloxides [Ba]– OB{CH(SiMe3)2} are presented. These mono‐ or dinuclear complexes feature low coordination numbers, as low as two for [Ba(OB{CH(SiMe3)2}2)2], which is further stabilized by intra‐ and intermolecular Ba???H3C agostic interactions. Barium boryloxides and the parent [Ba{N(SiMe3)2}2?(thf)2] catalyze the dehydrocoupling of borinic acids with hydrosilanes, providing borasiloxanes under mild conditions.  相似文献   

19.
Reaction of bis(amide) sodium Na2[(1R,2R)-(−)-1,2-(NSiMe3)2-C6H10] (Na2[L1]) with Ti(OiPr)2Cl2 in different conditions gave mixed-ligand complexes [Ti(OiPr)Cl][L1] (1) or [Ti(OiPr)2Cl]2[L1] (2); 2 is a dinuclear titanium example in which Ti atoms are bridged by nitrogen and oxygen atoms simultaneously forming a distorted rhombic core. Reaction of the amine-amidinate ligand (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-(NHSiMe3)-C6H10(Li[L2]) or rarely linked bis(amidinate) ligand Li2[(1R,2R)-(−)-1,2-{NC(Ph)N(SiMe3)}2-C6H10](Li2[L3]) with ZrCl4 yielded the unbridged and bridged bis(amidinate) complexes ZrCl2[L2]2 (3) and [ZrCl2(THF)][L3] (4), respectively; Moreover, the reaction of (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-Li(NSiMe3)C6H10(Li2[L2]) with Ti(OiPr)2Cl2 gave a new type of tridentate amido-amidinate product [Ti(OiPr)2][L2] (6), which is a distinct model compared to [Ti(OiPr)2Cl][L2] (5) yielded from Li[L2]. All the products have been characterized by X-ray crystallography and the structural studies are presented detailedly comparing with relevant compounds.  相似文献   

20.
The reaction of the dilithium salt Li2[Me2Si(C5H4)(C5Me4)] (2) of Me2Si(C5H5)(C5HMe4) (1) with [MCl(C8H12)]2 (M=Rh, Ir) and [RhCl(CO)2]2 afforded homodinuclear metal complexes [{Me2Si(η5-C5H4)(η5-C5Me4)}{M(C8H12)}2] (M=Rh: 3; M=Ir: 4) and [{Me2Si(η5-C5H4)(η5-C5Me4)}Rh2(CO)2(μ-CO)] (5), respectively. The reaction of 2 with RhCl(CO)(PPh3)2 afforded a mononuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}Rh(CO)PPh3] (6) leaving the C5HMe4 moiety intact. Taking advantage of the difference in reactivity of the two cyclopentadienyl moieties of 2, heterodinuclear complexes were prepared in one pot. Thus, the reaction of 2 with RhCl(CO)(PPh3)2, followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded a homodinuclear metal complex [Rh(CO)PPh3{(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (7) consisting of two rhodium centers with different ligands and a heterodinuclear metal complex [Rh(CO)(PPh3){(η5-C5H4)SiMe25-C5Me4)}Ir(C8H12)] (8). The successive treatment of 2 with [IrCl(C8H12)]2 and [RhCl(C8H12)]2 provided heterodinuclear metal complex [Ir(C8H12){(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (9). The reaction of 2 with CoCl(PPh3)3 and then with PhCCPh gave a mononuclear cobaltacyclopentadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(CPhCPhCPhCPh)(PPh3)] (10). However, successive treatment of 2 with CoCl(PPh3)3, PhCCPh and [MCl(C8H12)]2 in this order afforded heterodinuclear metal complexes [M(C8H12){(η5-C5H4)SiMe25-C5Me4)}Co(η4-C4Ph4)] (M=Rh: 11; M=Ir: 12) in which the cobalt center was connected to the C5Me4 moiety. Although the heating of 10 afforded a tetraphenylcyclobutadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(η4-C4Ph4)] (13), in which the cobalt center was connected to the C5H4 moiety, simple heating of the reaction mixture of 2, CoCl(PPh3)3 and PhCCPh resulted in the formation of a tetraphenylcyclobutadiene complex [{Me2Si(C5H5)(η5-C5Me4)}Co(η4-C4Ph4)] (14), in which the cobalt center was connected to the C5Me4 moiety. The mechanism of the cobalt transfer was suggested based on the electrophilicity of the formal trivalent cobaltacyclopentadiene moiety. In the presence of 1,5-cyclooctadiene, the reaction of 2 with CoCl(PPh3)3 provided a mononuclear cobalt cyclooctadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(C8H12)] (15). The reaction of 15 with n-BuLi followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded the heterodinuclear metal complexes of [Co(C8H12){(η5-C5H4)SiMe25-C5Me4)}M(C8H12)] (M=Rh: 16; M=Ir: 17). Treatment of 6 with Fe2(CO)9 at room temperature afforded a heterodinuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}{Rh(PPh3)(μ-CO)2Fe(CO)3}] (18) in which the C5HMe4 moiety was kept intact. Treatment of dinuclear metal complex 5 with Fe2(CO)9 afforded a heterotrinuclear metal complex [{(η5-C5H4)SiMe25-C5Me4)}{Rh(CO)Rh(μ-CO)2Fe(CO)3}] (19) having a triangular metal framework. The crystal and molecular structures of 3, 11, 12, 18 and 19 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号