首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lack of systematic structural resolution makes it difficult to build specific transition-metal-atom-doped carbonized polymer dots (TMA-doped CPDs). Herein, the structure-activity relationship between Cu atoms and CPDs was evaluated by studying the peroxidase-like properties of Glu−Cu−CPDs prepared by using copper glutamate (Glu) with a Cu−N2O2 initial structure. The results showed that the Cu atoms bound to Glu−Cu−CPDs in the form of Cu−N2C2, indicating that Cu−O bonds changed into Cu−C bonds under hydrothermal conditions. This phenomenon was also observed in other copper-doped CPDs. Moreover, the carboxyl and amino groups content decreased after copper-atom doping. Theoretical calculations revealed a dual-site catalytic mechanism for catalyzing H2O2. The detection of intracellular H2O2 suggested their application prospects. Our study provides an in-depth understanding of the formation and catalytic mechanism of TMA-doped-CPDs, allowing for the generation specific TMA-doped-CPDs.  相似文献   

2.
Single atom catalysts (SACs) are of great importance for oxygen reduction, a critical process in renewable energy technologies. The catalytic performance of SACs largely depends on the structure of their active sites, but explorations of highly active structures for SAC active sites are still limited. Herein, we demonstrate a combined experimental and theoretical study of oxygen reduction catalysis on SACs, which incorporate M−N3C1 site structure, composed of atomically dispersed transition metals (e.g., Fe, Co, and Cu) in nitrogenated carbon nanosheets. The resulting SACs with M−N3C1 sites exhibited prominent oxygen reduction catalytic activities in both acidic and alkaline media, following the trend Fe−N3C1 > Co−N3C1 > Cu−N3C1. Theoretical calculations suggest the C atoms in these structures behave as collaborative adsorption sites to M atoms, thanks to interactions between the d/p orbitals of the M/C atoms in the M−N3C1 sites, enabling dual site oxygen reduction.  相似文献   

3.
Lithium-oxygen batteries (LOBs) meet the growing demand for long-distance transportation over electric vehicles but face challenges because of the lack of high-performance cathode catalysts. Herein, using density functional theory calculations, we report a unique graphene allotrope, biphenylene, of which the doping structures exhibit great potential as metal-free catalysts for LOBs. Our modeling results demonstrate that the biphenylene nanosheets retain metallic properties after B doping, N doping, or B−N co-doping. Compared with the pristine biphenylene, the catalytic activity of the doped biphenylene is greatly improved due to charge redistributions. Notably, the overpotentials of the B−N co-doped biphenylene are as low as 0.19 and 0.18 V for the discharge and charge processes, respectively. Based on the electronic structure and bonding analysis, we identify two factors, i. e., Li−O bond strength and *Li2O2 adsorption energy, that can influence the Li−O2 electrochemical reactions. This study not only proposes a promising cathode catalyst but also provides insights into optimizing cathode catalysts for LOBs.  相似文献   

4.
《中国化学快报》2021,32(11):3402-3409
The effects of different species and concentrations’ signal molecules on aerobic activated sludge system were investigated through batch experiments. Results showed that the fastest NH4+-N oxidization rate and the most extracellular polymeric substances (EPS) secretion were obtained by adding 5 nmol/L N-hexanoyl-l-homoserine lactone (C6-HSL) into the aerobic activated sludge. Further study investigated the correlation among N-acyl-homoserine lactones-mediated quorum sensing (AHLs-mediated QS), nutrient removal performances and microbial communities with the long-term addition of 5 nmol/L C6-HSL. It was found that C6-HSL-manipulation could enhance the stability and optimize the decontamination performance of aerobic granular sludge (AGS) system. Microbial compositions considerably shifted with long-term C6-HSL-manipulation. Exogenous C6-HSL-manipulation inhibited quorum quenching-related (QQ-related) activities and enhanced QS-related activities during the stable period. The proposed C6-HSL-manipulation might be a potential technology to inhibit the growth of harmful bacteria in AGS, which could provide a theoretical foundation for the realization of more stable biological wastewater treatments.  相似文献   

5.
Silicones are highly valuable poly- and oligomeric materials with a broad range of applications due to their outstanding physicochemical properties. The core framework of silicone materials consists of siloxane (Si−O−Si) bonds, and thus, the development of efficient siloxane-bond-forming reactions has attracted much attention. However, these reactions, especially “catalytic” siloxane-bond-forming reactions that enable the selective formation of unsymmetrical siloxane bonds, remain relatively underdeveloped. On the other hand, controlled iteration has become a powerful tool for the sequence-controlled synthesis of poly- and oligomeric compounds. Recently, control over the siloxane sequence has been achieved by the one-pot iteration of a B(C6F5)3-catalyzed dehydrocarbonative cross-coupling of alkoxysilanes with hydrosilanes and a B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds. Thus, it is now possible to generate linear, branched, and cyclic sequence-specific oligosiloxanes in a highly selective manner under chloride-free conditions.  相似文献   

6.
Common nonlinear optical (NLO) crystals consist of traditional functional building blocks with inherent optical limitation. Herein, inspired by traditional (B3O6)3− inorganic building block, we theoretically identified a new type of organic functional building blocks and then successfully synthesized the first cyamelurate NLO crystal, Ba(H2C6N7O3)2 ⋅ 8 H2O. To our surprise, the constituent (H2C6N7O3) building block is not in structurally optimal arrangement, but Ba(H2C6N7O3)2 ⋅ 8 H2O exhibits excellent optical properties including wide band gap of 4.10 eV, very large birefringence of 0.24@550 nm, and exceptionally strong second-harmonic generation (SHG) response of about 12×KH2PO4. Both the SHG response and birefringence are much larger than those of commercial NLO crystal β-BaB2O4 with optimally aligned (B3O6)3− building block. Theoretical calculations suggest that the expanded π-conjugation delocalization within (H2C6N7O3) vs (B3O6)3− should be responsible to the enhanced performance. This work implies that there is still much room to develop new NLO crystals with excellent functional building blocks that may be longly neglected.  相似文献   

7.
The chlorination of Si−H bonds often requires stoichiometric amounts of metal salts in conjunction with hazardous reagents, such as tin chlorides, Cl2, and CCl4. The catalytic chlorination of silanes often involves the use of expensive transition‐metal catalysts. By a new simple, selective, and highly efficient catalytic metal‐free method for the chlorination of Si−H bonds, mono‐, di‐, and trihydrosilanes were selectively chlorinated in the presence of a catalytic amount of B(C6F5)3 or Et2O⋅B(C6F5)3 and HCl with the release of H2 as a by‐product. The hydrides in di‐ and trihydrosilanes could be selectively chlorinated by HCl in a stepwise manner when Et2O⋅B(C6F5)3 was used as the catalyst. A mechanism is proposed for these catalytic chlorination reactions on the basis of competition experiments and density functional theory (DFT) calculations.  相似文献   

8.
Diborane(6) dianions with substituents that are bonded to boron via carbon are very reactive and therefore only a few examples are known. Diborane(6) derivatives are the simplest catenated boron compounds with an electron‐precise B–B σ‐bond that are of fundamental interest and of relevance for material applications. The homoleptic hexacyanodiborane(6) dianion [B2(CN)6]2− that is chemically very robust is reported. The dianion is air‐stable and resistant against boiling water and anhydrous hydrogen fluoride. Its salts are thermally highly stable, for example, decomposition of (H3O)2[B2(CN)6] starts at 200 °C. The [B2(CN)6]2− dianion is readily accessible starting from 1) B(CN)32− and an oxidant, 2) [BF(CN)3] and a reductant, or 3) by the reaction of B(CN)32− with [BHal(CN)3] (Hal=F, Br). The latter reaction was found to proceed via a triply negatively charged transition state according to an SN2 mechanism.  相似文献   

9.
Density functional theory has been used to elucidate the mechanistic underpinnings of the regeneration of ammonia-borane (H3B−NH3, AB ) from polyborazylene (BxNxHx, PBz ) in the presence of hydrazine (H2N−NH2, Hz ). Herein, borazine (B3N3H6, Bz ) is used as the simplest relevant model of PBz for the regeneration process. Digestion of Bz using Hz was found to occur by a string of Lewis acid base adduct (between B atoms of Bz and Hz molecule) formation and Hz assisted proton transfer processes. Later, B−H bonds of HB(NHNH2)2, the Bz digested product, are redistributed to form hydrazine-borane (H3B−NH2NH2, HzB ) and B(NHNH2)3. Redistribution of B−H bonds occurs through hydroboration and concerted proton-hydride transfer. Another B−H redistributed product, B(NHNH2)3, produces HzB as a result of proton and hydride transfer from cis-diazene ( Dz ), the oxidized product of Hz in presence of O2.  相似文献   

10.
The doping of graphene molecules by borazine (B3N3) units may modify the electronic properties favorably. Therefore, the influence of the substitution of the central benzene ring of hexa‐peri‐hexabenzocoronene (HBC, C42H18) by an isoelectronic B3N3 ring resulting in C36B3N3H18 (B3N3HBC) is investigated by computational methods. For comparison, the isoelectronic and isosteric all‐B/N molecule B21N21H18 (termed BN) and its carbon derivative C6B18N18H18 (C6BN), obtained by substitution of a central B3N3 by a C6 ring, are also studied. The substitution of C6 in the HBC molecule by a B3N3 unit results in a significant change of the computed IR vibrational spectrum between 1400 and 1600 cm?1 due to the polarity of the borazine core. The properties of the BN molecule resemble those of hexagonal boron nitride, and substitution of the central B3N3 ring by C6 changes the computed IR vibrational spectrum only slightly. The allowed transitions to excited states associated with large oscillator strengths shift to higher energy upon going from HBC to B3N3HBC, but to lower energy upon going from BN to C6BN. The possibility of synthesis of B3N3HBC from hexaphenylborazine (HPB) using the Scholl reaction (CuCl2/AlCl3 in CS2) is investigated. Rather than the desired B3N3HBC an insoluble and X‐ray amorphous polymer P is obtained. Its analysis by IR and 11B magic angle spinning NMR spectroscopy reveals the presence of borazine units. The changes in the 11B quadrupolar coupling constant CQ, asymmetry parameter η, and isotropic chemical shift δiso(11B) with respect to HPB are in agreement with a structural model that includes B3N3HBC‐derived monomeric units in polymer P. This indicates that both intra‐ and intermolecular cyclodehydrogenation reactions take place during the Scholl reaction of HPB.  相似文献   

11.
The development of methods for selective cleavage reactions of thermodynamically stable C−C/C=C bonds in a green manner is a challenging research field which is largely unexplored. Herein, we present a heterogeneous Fe−N−C catalyst with highly dispersed iron centers that allows for the oxidative C−C/C=C bond cleavage of amines, secondary alcohols, ketones, and olefins in the presence of air (O2) and water (H2O). Mechanistic studies reveal the presence of water to be essential for the performance of the Fe−N−C system, boosting the product yield from <1 % to >90 %. Combined spectroscopic characterizations and control experiments suggest the singlet 1O2 and hydroxide species generated from O2 and H2O, respectively, take selectively part in the C−C bond cleavage. The broad applicability (>40 examples) even for complex drugs as well as high activity, selectivity, and durability under comparably mild conditions highlight this unique catalytic system.  相似文献   

12.
Electrocatalytic N2 reduction reaction (NRR) is recognized as a zero-carbon emission method for NH3 synthesis. However, to date, this technology still suffers from low yield and low selectivity associated with the catalyst. Herein, inspired by the activation of N2 by lithium metal, a highly reactive defective black phosphorene (D−BPene) is proposed as a lithium-like catalyst for boosting electrochemical N2 activation. Correspondingly, we also report a strategy for producing environmentally stable D−BPene by simultaneously constructing defects and fluorination protection based on topochemical reactions. Reliable performance evaluations show that the fluorine-stabilized D−BPene can induce a high NH3 yield rate of ≈70 μg h−1 mgcat.−1 and a high Faradaic efficiency of ≈26 % at −0.5 V vs. RHE in an aqueous electrolyte. This work not only exemplifies the first stable preparation and practical application of D−BPene, but also brings a new design idea for NRR catalysts.  相似文献   

13.
Amongst various Fenton-like single-atom catalysts (SACs), the zinc (Zn)-related SACs have been barely reported due to the fully occupied 3d10 configuration of Zn2+ being inactive for the Fenton-like reaction. Herein, the inert element Zn is turned into an active single-atom catalyst (SA−Zn−NC) for Fenton-like chemistry by forming an atomic Zn−N4 coordination structure. The SA−Zn−NC shows admirable Fenton-like activity in organic pollutant remediation, including self-oxidation and catalytic degradation by superoxide radical (O2) and singlet oxygen (1O2). Experimental and theoretical results unveiled that the single-atomic Zn−N4 site with electron acquisition can transfer electrons donated by electron-rich pollutants and low-concentration PMS toward dissolved oxygen (DO) to actuate DO reduction into O2 and successive conversion into 1O2. This work inspires an exploration of efficient and stable Fenton-like SACs for sustainable and resource-saving environmental applications.  相似文献   

14.
In the work reported herein, the electrocatalytic properties of Co3O4 in hydrogen and oxygen evolution reactions have been significantly enhanced by coating a shell layer of a copper-based metal–organic framework on Co3O4 porous nanowire arrays and using the products as high-performance bifunctional electrocatalysts for overall water splitting. The coating of the copper-based metal–organic framework resulted in the hybridization of the copper-embedded protective carbon shell layer with Co3O4 to create a strong Cu−O−Co bonding interaction for efficient hydrogen adsorption. The hybridization also led to electronically induced oxygen defects and nitrogen doping to effectively enhance the electrical conductivity of Co3O4. The optimal as-prepared core–shell hybrid material displayed excellent overall-water-splitting catalytic activity that required overall voltages of 1.45 and 1.57 V to reach onset and a current density of 10 mA cm−2, respectively. This is the first report to highlight the relevance of hybridizing MOF-based co-catalysts to boost the electrocatalytic performance of nonprecious transition-metal oxides.  相似文献   

15.
The complex [Pd(O,N,C‐L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6‐diacetylpyridine, reacts with 2‐iodobenzoic acid at room temperature to afford the very stable pair of PdIV complexes (OC‐6‐54)‐ and (OC‐6‐26)‐[Pd(O,N,C‐L)(O,C‐C6H4CO2‐2)I] (1.5:1 molar ratio, at ?55 °C). These complexes and the PdII species [Pd(O,N,C‐L)(OX)] and [Pd(O,N,C‐L′)(NCMe)]ClO4, (X=MeC(O) or ClO3, L′=another monoanionic pincer ligand derived from 2,6‐diacetylpyridine), are precatalysts for the arylation of CH2?CHR (R?CO2Me, CO2Et, Ph) using IC6H4CO2H‐2 and AgClO4. These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two PdIV complexes was detected by ESI(+)‐MS during the catalytic process. All the data obtained strongly support a PdII/PdIV catalytic cycle.  相似文献   

16.
We have performed a density functional theory study to investigate the effect of carbon doping on Stone–Wales (SW) defective sites in the armchair (4, 4), (5, 5) and (6, 6) BNNTs, in order to remove structural instability induced by homonuclear N–N and B–B bonds. Two different orientations of SW defect are considered, parallel and diagonal, and then C atoms are doped at different positions of the defect sites. In general, it seems that among the considered arrangements, C atoms prefer to be substituted for the homonuclear B–B bond. The larger HOMO–LUMO band gaps for the most stable configurations indicate that C doping at B–B sites is kinetically more favorable than the other ones. According to calculated nuclear quadrupole resonance (NQR) parameters as a result of C-doping on SW defective sites, the quadrupole coupling constants (C Q ) of boron nuclei at defective sites decrease by about 0.508–1.406 MHz while 14N C Q of the defective sites, except for N8, increases. Interestingly, C Q of the N sites directly connected to dopant sites has maximum increment (0.612–2.596 MHz) while C Q of the N sites belonging to the B2N3 pentagon is undergone to some minor changes.  相似文献   

17.
This work showcases a new catalytic cyclization reaction using a highly Lewis acidic borane with concomitant C−H or C−C bond formation. The activation of alkyne‐containing substrates with B(C6F5)3 enabled the first catalytic intramolecular cyclizations of carboxylic acid substrates using this Lewis acid. In addition, intramolecular cyclizations of esters enable C−C bond formation as catalytic B(C6F5)3 can be used to effect formal 1,5‐alkyl migrations from the ester functional groups to unsaturated carbon–carbon frameworks. This metal‐free method was used for the catalytic formation of complex dihydropyrones and isocoumarins in very good yields under relatively mild conditions with excellent atom efficiency.  相似文献   

18.
[B4O5(OH)42−] is a representative borate anion with a double six-membered ring structure, but there is limited knowledge about the hydrolysis mechanisms of [B4O5(OH)42−]. Density functional theory-based calculations show that the tetraborate ion undergoes three-step hydrolysis to form [B(OH)4] and an ring intermediate, [B3O2(OH)6]. Other new structures, such as linear trimer, branched tetraborate, analogous linear tetraborate, are observed, but they are not stable in neutral systems and change to ring structures. [B3O2(OH)6] hydrolyzes to [B(OH)4] and [B(OH)3] in the last two steps. The structure of borate anion and the coordination environment of the bridge oxygen atom control the hydrolysis process. [B4O5(OH)42−] always participates in the hydrolysis reaction, even with a decrease in concentration. [B3O3(OH)4], [B(OH)4], and [B(OH)3] have different roles in “water-poor” and “water-rich” zones. Concentration and pH of solution are the key factors that affect the distribution of borate ions.  相似文献   

19.
Electron-precise B−B bonded compounds are valuable reagents in organic syntheses, which can be used as key starting material for the synthesis of functionalized organoboranes. Bis(pinacolato)diborane(4) B2pin2 and its derivatives are among the most studied diboron species. However, their B−B bonds usually need to be activated by transition metal catalysts or bases for further transformations. Recently, many well-designed/reactive electron-precise B−B bonded compounds have been developed, which could facilitate direct reactions with small molecules, unsaturated substrates, and electrophiles. This review highlights the synthesis, structure, and reactivity of neutral and anionic B−B bonded compounds.  相似文献   

20.
The two isomorphous title compounds, [1,5,9‐tris(2‐aminoethoxy)‐3,7,11‐trihydroxy‐3,7,11‐tribora‐1,5,9‐triborata‐2,4,6,8,10,12‐hexaoxa‐13‐oxoniatricyclo[7.3.1.05,13]tridecane]cobalt(II), [Co(C6H21B6N3O13)] or Co{B6O7(OH)3[O(CH2)2NH2]3}, and the NiII analogue, [Ni(C6H21B6N3O13)], each consist of an MII cation and an inorganic–organic hybrid {B6O7(OH)3[O(CH2)2NH2]3}2− anion. The MII cation lies on a crystallographic threefold axis (as does one O atom) and is octahedrally coordinated by three N atoms from the organic component. Three O atoms covalently link the B–O cluster and the organic component. Molecules are connected to one another through N—H...O and O—H...O hydrogen bonds, forming a three‐dimensional supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号