首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A new bis-β-diketone, 3,3'-bis(4,4,4-trifluoro-1,3-dioxobutyl)biphenyl (BTB), has been designed and prepared for the synthesis of a series of dinuclear lanthanide complexes [Ln(2)(BTB)(3)(C(2)H(5)OH)(2)(H(2)O)(2)] [Ln = Eu (1), Gd (2)], [Ln(2)(BTB)(3)(DME)(2)] [Ln = Nd (3), Yb (4); DME = ethylene glycol dimethyl ether] and [Eu(2)(BTB)(3)(L)(2)] [L = 2,2-bipydine (5); 1,10-phenanthroline (6); 4,7-diphenyl-1,10-phenanthroline (7)]. Complexes 1-7 have been characterized by various spectroscopic techniques and their photophysical properties are investigated. X-ray crystallographical analysis reveals that complexes 1, 3 and 4 adopt triple-stranded dinuclear structures which are formed by three bis-bidentate ligands with two lanthanide ions. The complexes 1 and 3-7 display strong visible red or NIR luminescence upon irradiation at ligand band around 372 nm, depending on the choice of the lanthanide. The solid-state photoluminescence quantum yields and the lifetimes of Eu(3+) complexes are determined and described.  相似文献   

2.
The ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc(2)phen) and ferrocenoyltrifluoroacetone (Hfta) have been used to synthesize ferrocene-containing rare-earth beta-diketonate complexes. The complexes [Ln(tta)(3)(Fc(2)phen)] and [Ln(fta)(3)(phen)] (where Ln = La, Nd, Eu, Yb) show structural similarities to the tris(2-thenoyltrifluoroacetonate)(1,10-phenanthroline)lanthanide(III) complexes, [Ln(tta)(3)(phen)]. The coordination number of the lanthanide ion is 8, and the coordination sphere can be described as a distorted dodecahedron. However, the presence of the ferrocene moieties shifts the ligand absorption bands of the rare-earth complexes to longer wavelengths so that the complexes can be excited not only by ultraviolet radiation but also by visible light of wavelengths up to 420 nm. Red photoluminescence is observed for the europium(III) complexes and near-infrared photoluminescence for the neodymium(III) and ytterbium(III) complexes. The presence of the ferrocene groups makes the rare-earth complexes hydrophobic and well-soluble in apolar organic solvents.  相似文献   

3.
The reactions of bidentate diimine ligands (L2) with binuclear [Ru(L1)(CO)Cl2]2 complexes [L1 not equal to L2 = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me2bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me2bpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen), di(2-pyridyl)ketone (dpk), di(2-pyridyl)amine (dpa)] result in cleavage of the dichloride bridge and the formation of cationic [Ru(L1)(L2)(CO)Cl]+ complexes. In addition to spectroscopic characterization, the structures of the [Ru(bpy)(phen)(CO)Cl]+, [Ru(4,4'-Me2bpy)(5,6-Me2phen)(CO)Cl]+ (as two polymorphs), [Ru(4,4'-Me2bpy)(4,7-Me2phen)(CO)Cl]+, [Ru(bpy)(dpa)(CO)Cl]+, [Ru(5,5'-Me2bpy)(dpa)(CO)Cl]+, [Ru(bpy)(dpk)(CO)Cl]+, and [Ru(4,4'-Me2bpy)(dpk)(CO)Cl]+ cations were confirmed by single crystal X-ray diffraction studies. In each case, the structurally characterized complex had the carbonyl ligand trans to a nitrogen from the incoming diimine ligand, these complexes corresponding to the main isomers isolated from the reaction mixtures. The synthesis of [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)(NO3)]+ from [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)Cl]+ and AgNO3 demonstrates that exchange of the chloro ligand can be achieved.  相似文献   

4.
The polyamino ligand 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane (1) has been used to synthesise two new ligands by Schiff-base condensation with methyl sodium acetyl phosphonate to give ligand L and methyl sodium 4-methoxybenzoyl phosphonate to give ligand L1 in the presence of lanthanide ion as templating agent to form the complexes [Ln(L)] and [Ln(L1)](Ln = Y, La, Gd, Yb). Both ligands L and L1 have nine donor atoms comprising three amine and three imine N-donors and three phosphonate O-donors and form Ln(III) complexes in which the three pendant arms of the ligands wrap around the nine-coordinate Ln(III) centres. Complexes with Y(III), La(III), Gd(III) and Yb(III) have been synthesised and the complexes [Y(L)], [Gd(L)] and [Gd(L1)] have been structurally characterised. In all the complexes the coordination polyhedron about the lanthanide centre is slightly distorted tricapped trigonal prismatic with the two triangular faces of the prism formed by the macrocyclic N-donors and the phosphonate O-donors. Interestingly, given the three chiral phosphorus centres present in [Ln(L)] and [Ln(L1)] complexes, the three crystal structures reported show the presence of only one diastereomer of the four possible. 1H, 13C and 31P NMR spectroscopic studies on diamagnetic [Y(L)] and [La(L)] and on paramagnetic [Yb(L)] complexes indicate the presence in solution of all the four different diastereomers in varying proportions. The stability of complexes [Y(L)] and [Y(L1)] in D2O in both neutral and acidic media, and the relaxivity of the Gd(III) complexes, have also been investigated.  相似文献   

5.
Seven useful mixed-ligand complexes in the form of [Ir(terpy)(L)Cl]2+ were prepared and their spectroscopic and electrochemical properties were investigated. The ligands used were terpy = 2,2':6',2'-terpyridine, L = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-diphenyl-2,2'-bipyridine, 1,10-phenanthroline, 5-phenyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2,3-bis(2-pyridyl)pyrazine. Synthetic methods were developed by a sequential ligand-replacement which occurred in the reaction vessel using a microwave oven. All complexes showed that LUMOs are based on the pi-system contribution of the terpyridine ligand for [Ir(terpy)(bpy)Cl]2+, [Ir(terpy)(dmbpy)Cl]2+, [Ir(terpy)(dpbpy)Cl]2+, [Ir(terpy)(phen)Cl]2+, [Ir(terpy)(dpphen)Cl]2+ and [Ir(terpy)(phphen)Cl]2+. On the other hand, the LUMO in the [Ir(terpy)(bppz)Cl]2+ complex is localized on the pi-system of the bppz ligand, whereas the HOMOs in the iridium complexes are localized on the terpyridine ligand. It was found that Ir(terpy)(L)Cl emits in a fluid solution at room temperature. The ancillary ligands, such as terpy and bpy, have been explored to extend the lifetime of the triplet 3(pi-pi') excited states of Ir(III) terpyridine complexes. Ir(III) terpyridine units with an electron donor (dmbpy) or electron acceptor substituents (terpy, dpbpy, phphen, dpphen and bppz) are found to decrease the energy of the 3LC states for use as photosensitizer molecular components in supramolecular devices. The spectroscopic and electrochemical details are also reported herein.  相似文献   

6.
Introduction Recently, the coordination polymers based on dicar-boxylic acid have been studied extensively for their importance as promising materials.1-7 So the rational design and synthesis of novel coordination polymers with useful functions attract considerable attention. As well known, the design of extended structure with po-tential applications can be realized by starting with connecting ligands capable of binding metal centers strongly and predictably to afford the structures with expe…  相似文献   

7.
Detailed structural, magnetic, and luminescence studies of six different crystalline phases obtained in the lanthanide/pyrimidine-4,6-dicarboxylate/oxalate system have been afforded: {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·3H(2)O}(n) (1-Ln), {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(3)]·2H(2)O}(n) (2-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·~2.33H(2)O}(n) (3-Ln), {[Ln(2)(μ(3)-pmdc)(μ(4)-pmdc)(μ-ox)(H(2)O)(3)]·5H(2)O}(n) (4-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·H(2)O}(n) (5-Ln), and [Ln(pmdc)(1.5)(H(2)O)(2.5)] (6-Ln). The slow generation of the oxalate (ox) anion, obtained from the in situ partial hydrothermal decomposition of the pyrimidine-4,6-dicarboxylate (pmdc) ligand, allows us to obtain good shaped single crystals, while direct addition of potassium oxalate provides the same compounds but as polycrystalline samples. The crystal structures of all compounds are based on the double chelation established by the pmdc and ox ligands to provide distorted 2D honeycomb layers that, in some cases, are fused together, leading to 3D systems, by replacing some of the coordinated water molecules that complete the coordination sphere of the lanthanide by uncoordinated carboxylate oxygen atoms of the pmdc. The presence of channels occupied by crystallization water molecules is also a common feature with the exception of compounds 5-Ln. It is worth noting that compounds 3-Ln present a commensurate crystal structure related to the partial occupancy of the crystallization water molecules placed within the channels. Topological analyses have been carried out, showing a previously nonregistered topology for compounds 4-Ln, named as jcr1. The crystal structures are strongly dependent on the lanthanide ion size and the temperature employed during the hydrothermal synthesis. The lanthanide contraction favors crystal structures involving sterically less hindranced coordination environments for the final members of the lanthanide series. Additionally, reinforcement of the entropic effects at high temperatures directs the crystallization process toward less hydrated crystal structures. The magnetic data of these compounds indicate that the exchange coupling between the lanthanide atoms is almost negligible, so the magnetic behavior is dominated by the spin-orbit coupling and the ligand field perturbation. The luminescence properties that exhibit the compounds containing Nd(III), Eu(III), and Tb(III) have been also characterized.  相似文献   

8.
Herein, we discuss how, why, and when cascade complexation reactions produce stable, mononuclear, luminescent ternary complexes, by considering the binding of hexafluoroacetylacetonate anions (hfac(-)) and neutral, semi-rigid, tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligands (Lk) to trivalent lanthanide atoms (Ln(III)). The solid-state structures of [Ln(Lk)(hfac)(3)] (Ln=La, Eu, Lu) showed that [Ln(hfac)(3)] behaved as a neutral six-coordinate lanthanide carrier with remarkable properties: 1) the strong cohesion between the trivalent cation and the didentate hfac anions prevented salt dissociation; 2) the electron-withdrawing trifluoromethyl substituents limited charge-neutralization and favored cascade complexation with Lk; 3) nine-coordination was preserved for [Ln(Lk)(hfac)(3)] for the complete lanthanide series, whilst a counterintuitive trend showed that the complexes formed with the smaller lanthanide elements were destabilized. Thermodynamic and NMR spectroscopic studies in solution confirmed that these characteristics were retained for solvated molecules, but the operation of concerted anion/ligand transfers with the larger cations induced subtle structural variations. Combined with the strong red photoluminescence of [Eu(Lk)(hfac)(3)], the ternary system Ln(III)/hfac(-)/Lk is a promising candidate for the planned metal-loading of preformed multi-tridentate polymers.  相似文献   

9.
The syntheses, structures, and magnetic properties are reported for four new lanthanide clusters [Sm(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4H(2)O (1), [Gd(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4CH(3)CN (2), and [Ln(4)(μ(3)-OH)(2)L(2)(acac)(6)]·2H(2)L·2CH(3)CN (3, Ln = Tb; 4, Ln = Dy) supported by salen-type (H(2)L = N,N'-bis(salicylidene)-1,2-cyclohexanediamine) and β-diketonate (acac = acetylacetonate) ligands. The four clusters were confirmed to be essentially isomorphous by infrared spectroscopy and single-crystal X-ray diffraction. Their crystal structures reveal that the salen-type ligand provides a suitable tetradentate coordination pocket (N(2)O(2)) to encapsulate lanthanide(III) ions. Moreover, the planar Ln(4) core is bridged by two μ(3)-hydroxide, four phenoxide, and two ketonate oxygen atoms. Magnetic properties of all four compounds have been investigated using dc and ac susceptibility measurements. For 4, the static and dynamic data indicate that the Dy(4) complex exhibits slow relaxation of the magnetization below 5 K associated with single-molecule magnet behavior.  相似文献   

10.
Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.  相似文献   

11.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

12.
Five novel coordination polymers [Zn(2)(OA)(4,4'-bipy)(H(2)O)].0.5(4,4'-bipy), [Zn(2)(OA)(dib)(H(2)O)].H(2)O, [Zn(2)(OA)(bbi)(2)].3H(2)O, [Zn(2)(OA)(phen)(2)(H(2)O)] and [Zn(4)(OA)(2)(2,2'-bipy)(2)(H(2)O)].2H(2)O were obtained by hydrothermal reactions of Zn(NO(3))(2).6H(2)O with a V-shaped multicarboxylate ligand 3,3',4,4'-oxydiphthalic acid (H(4)OA) and a series of N-donor ligands, namely 4,4'-bipyridine (4,4'-bipy), 1,4-di(1-imidazolyl)benzene (dib), 1,1'-(1,4-butanediyl)bis(imidazole) (bbi), 1,10-phenanthroline (phen), 2,2'-bipyridine (2,2'-bipy). The structures of the complexes were established by single-crystal X-ray diffraction analysis. Complex exhibits a robust 3D porous structure with uncoordinated 4,4'-bipy molecules filling the cavities. Complexes and show a complicated 3D framework, while complexes and have a 2D network and a 1D helical chain structure, respectively. The results indicate that the multicarboxylate OA(4-) ligand can adopt varied coordination modes in the formation of the complexes and the influence of the N-donor ligand on the structure of the complexes is discussed. The photoluminescence properties of H(4)OA and were studied in the solid state at room temperature. Moreover, nonlinear optical measurements showed that displayed a second-harmonic-generation (SHG) response of 0.5 times of that for urea. The results suggested that the configuration and flexibility of the ligands play a key role in directing the related properties of the complexes.  相似文献   

13.
A series of lanthanide and lanthanide-transition metal compounds with isonicotinic acid (Hina) and oxalate ligands have been synthesized under hydrothermal reactions. X-Ray crystal structure analyses reveal that they have a rich structural chemistry. Three distinct structure types were exhibited with decreasing lanthanide radii: [LnCu(ina)(2)(C(2)O(4))].H(2)O (Ln=La 1, Pr 2, Nd 3) for type I, [Ln(ina)(C(2)O(4))(H(2)O)(2)] (Ln=Sm 4, Eu 5, Gd 6) for type II, and [Ln(ina)(C(2)O(4))(0.5)(OH)] (Ln=Tb 7, Dy 8, Er 9) for type III. The structure of type I has a 3d-4f heterometallic structure and consists of 1D channels along the b axis, which filled with guest water molecules. They exhibit a first 3D uninodal eight-connected framework with a unique 3(6).4(18).5(3).6 topology. Type II has 2D Ln-ina-C(2)O(4) 4(4)-nets, the nitrogen donors of the ina ligand are not coordinated to any of the metal ions, inducing the lower dimensional networks. Type III consists of 2D Ln-C(2)O(4) layers pillared by ina ligands to form a pillared-layer framework. The structure evolution is due to the versatile coordination modes of ina and oxalate ligands as well as the lanthanide contraction effect. Notably, the oxalate ligand was in situ synthesized from orotic acid through an oxidation-hydrolysis reaction. The type III materials show high thermal stability; luminescence properties of Nd 3, Sm 4, Eu 5, Tb 7 are also investigated.  相似文献   

14.
Four lanthanide coordination polymers with benzophenone‐4,4′‐dicarboxylic acid (H2bpndc) and 1,10‐phenanthroline (phen), [Ln2(bpndc)3(phen)] (Ln=La (1), Pr (2) and Tb (3)), [Yb(bpndc)15(phen)].05H2O (4) were obtained through solvothermal synthesis. The crystallographic data show that 1, 2, and 3 are isostructural, the Ln(III) ions in 1, 2 and 3 are all eight‐ and ten‐coordinated, respectively, and thus the Ln(III) ions are connected by bpndc ligands, resulting in an interpenetrating 3D structure. While in 4, the Yb(III) ions are eight‐coordinated and connected by bpndc ligands into a 3D structure with 1D rhombic channels, which result from the effect of lanthanide contraction from La(III) to Yb(III) ions, and the bpndc ligands in 1, 2, 3, and 4 display three types of coordination modes.  相似文献   

15.
1H, 13C and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline [LL=4,4'-dimethyl-2,2'-bipyridine (dmbpy); 4,4'-diphenyl-2,2'-bipyridine (dpbpy); 4,7-dimethyl-1,10-phenanthroline (dmphen); 4,7-diphenyl-1,10-phenanthroline (dpphen)] having a general [M(LL)Cl2] formula were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H high-frequency coordination shifts (Delta1Hcoord=delta1Hcomplex-delta1Hligand) were discussed in relation to the changes of diamagnetic contribution in the relevant 1H shielding constants. The comparison to literature data for similar [M(LL)(XX)], [M(LL)X2] and [M(LL)XY] coordination or organometallic compounds containing various auxiliary ligands revealed a large dependence of delta1H parameters on inductive and anisotropic effects. 15N low-frequency coordination shifts (Delta15Ncoord=delta 15Ncomplex-delta15Nligand) of ca 88-96 ppm for M=Pd and ca 103-111 ppm for M=Pt were attributed to both the decrease of the absolute value of paramagnetic contribution and the increase of the diamagnetic term in the expression for 15N shielding constants. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) transition and by ca 6-7 ppm following dmbpy-->dmphen or dpbpy-->dpphen ligand replacement; variations between analogous complexes containing methyl and phenyl ligands (dmbpy vs dpbpy; dmphen vs dpphen) did not exceed+/-1.5 ppm. Experimental 1H, 13C, 15N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in DMSO or DMF solution.  相似文献   

16.
Mononuclear complexes [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] (bpym = 2,2'-bipyrimidine), in which one of the bipyrimidine sites is vacant, have been used as "complex ligands" to prepare heterodinuclear d-f complexes in which a lanthanide tris(1,3-diketonate) unit is attached to the secondary bipyrimidine site to evaluate the ability of d-block chromophores to act as antennae for causing sensitized near-infrared (NIR) luminescence from adjacent lanthanide(III) centers. The two sets of complexes so prepared are [Re(CO)(3)Cl(mu-bpym)Ln(fod)(3)] (abbreviated as Re-Ln; where Ln = Yb, Nd, Er) and [(F(3)C-C(6)H(4)-CC)(2)Pt(mu-bpym)Ln(hfac)(3)] (abbreviated as Pt-Ln; where Ln = Nd, Gd). Members of both series have been structurally characterized; the metal-metal separation across the bipyrimidine bridge is approximately 6.3 A in each case. In these complexes, the (3)MLCT (MLCT = metal to ligand charge-transfer) luminescences of the mononuclear [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] complexes are quenched by energy transfer to those lanthanides (Ln = Yb, Nd, Er) that have low-lying f-f states capable of NIR luminescence; as a result, sensitized NIR luminescence is seen from the lanthanide center following excitation of the d-block unit. In the solid state, quenching of the luminescence from the d-block chromophore is complete, indicating efficient d --> f energy transfer, as a result of the short metal-metal separation across the bipyrimidine bridge. In a CH(2)Cl(2) solution, partial dissociation of the dinuclear complexes into the mononuclear units occurs, with the result that some (3)MLCT luminescence is observed from mononuclear [Re(bpym)(CO)(3)Cl] or [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] present in the equilibrium mixture. Solution UV-vis and luminescence titrations, carried out by the addition of portions of Ln(fod)(3)(H(2)O)(2) or Ln(hfac)(3)(H(2)O)(2) to the d-block complex ligands, indicate that binding of the lanthanide tris(1,3-diketonate) unit at the secondary bipyrimidine site to give the d-f dinuclear complexes occurs with an association constant of ca. 10(5) M(-)(1).  相似文献   

17.
To study the conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylic acid (H(6)L), eleven new coordination polymers have been isolated from hydrothermal reactions of different metal salts with 1e,2a,3e,4a,5e,6a-cyclohexanehexacarboxylic acid (3e+3a, H(6)L(I)) and characterized. They are [Cd(12)(mu(6)-L(II))(mu(10)-L(II))(3)(mu-H(2)O)(6)(H(2)O)(6)]16.5 H(2)O (1), Na(12)[Cd(6)(mu(6)-L(II))(mu(6)-L(III))(3)]27 H(2)O (2), [Cd(3)(mu(13)-L(II))(mu-H(2)O)] (3), [Cd(3)(mu(6)-L(III))(2,2'-bpy)(3)(H(2)O)(3)]2 H(2)O (4), [Cd(4)(mu(4)-L(VI))(2)(4,4'-Hbpy)(4)(4,4'-bpy)(2)(H(2)O)(4)]9.5 H(2)O (5), [Cd(2)(mu(6)-L(II))(4,4'-Hbpy)(2)(H(2)O)(10)]5 H(2)O (6), [Cd(3)(mu(11)-L(VI))(H(2)O)(3)] (7), [M(3)(mu(9)-L(II))(H(2)O)(6)] (M=Mn (8), Fe (9), and Ni (10)), and [Ni(4)(OH)(2)(mu(10)-L(II))(4,4'-bpy)(H(2)O)(4)]6 H(2)O (11). Three new conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylate, 6e (L(II)), 4e+2a (L(III)) and 5e+1a (L(VI)), have been derived from the conformational conversions of L(I) and trapped in these complexes by controlling the conditions of the hydrothermal systems. Complexes 1 and 2 have three-dimensional (3D) coordination frameworks with nanoscale cages and are obtained at relatively low temperatures. A quarter of the L(I) ligands undergo a conformational transformation into L(II) while the others are transformed into L(III) in the presence of NaOH in 2, while all of the L(I) are transformed into L(II) in the absence of NaOH in 1. Complex 3 has a 3D condensed coordination framework, which was obtained under similar reaction conditions as 1, but at a higher temperature. The addition of 2,2'-bipyridine (2,2'-bpy) or 4,4'-bipyridine (4,4'-bpy) to the hydrothermal system as an auxiliary ligand also induces the conformational transformation of H(6)L(I). A new L(VI) conformation has been trapped in complexes 4-7 under different conditions. Complex 4 has a 3D microporous supramolecular network constructed from a 2D L(III)-bridged coordination layer structure by pi-pi interactions between the chelating 2,2'-bpy ligands. Complexes 5-7 have different frameworks with L(II)/L(VI) conformations, which were prepared by using different amounts of 4,4'-bpy under similar synthetic conditions. Both 5 and 7 are 3D coordination frameworks involving the L(VI) ligands, while 6 has a 3D microporous supramolecular network constructed from a 2D L(II)-bridged coordination layer structure by interlayer N(4,4'-Hbpy)--HO(L(II)) hydrogen bonds. 3D coordination frameworks 8-11 have been obtained from the H(6)L(I) ligand and the paramagnetic metal ions Mn(II), Fe(II), and Ni(II), and their magnetic properties have been studied. Of particular interest to us is that two copper coordination polymers of the formulae [{Cu(II) (2)(mu(4)-L(II))(H(2)O)(4)}{Cu(I) (2)(4,4'-bpy)(2)}] (12 alpha) and [Cu(II)(Hbtc)(4,4'-bpy)(H(2)O)]3 H(2)O (H(3)btc=1,3,5-benzenetricarboxylic acid) (12 beta) resulted from the same one-pot hydrothermal reaction of Cu(NO(3))(2), H(6)L(I), 4,4'-bpy, and NaOH. The Hbtc(2-) ligand in 12 beta was formed by the in situ decarboxylation of H(6)L(I). The observed decarboxylation of the H(6)L(I) ligand to H(3)btc may serve as a helpful indicator in studying the conformational transformation mechanism between H(6)L(I) and L(II-VI). Trapping various conformations in metal-organic structures may be helpful for the stabilization and separation of various conformations of the H(6)L ligand.  相似文献   

18.
He F  Tong ML  Yu XL  Chen XM 《Inorganic chemistry》2005,44(3):559-565
Discrete dinuclear and polymeric heterometallic copper(II)-lanthanide(III) complexes have been synthesized upon variation of pH and characterized by X-ray diffraction analysis. Reactions of the ligand Htza (tetrazole-1-acetic acid) with copper(II) and lanthanide(III) salts gave dinuclear [CuLn(tza)4(H2O)5Cl] complexes at the low pH of 3.5 and 2D heterometallic coordination polymers with high-nuclearity [{Cu2(OH)2}2{Cu12Ln6(mu3-OH)24(Cl)(1/2)(NO3)(1/2)(tza)12(H2O)18}](NO3)(9).8H2O (Ln = Gd or Nd) at a higher pH of 6.6. The acidity of the reaction solution can cause drastic changes in the structures of the products. In the dinuclear complexes, each pair of adjacent dinuclear molecules is linked through hydrogen bonds and pi-pi stacking interactions, and the whole structure is a hydrogen-bonded three-dimensional cubic net. In the coordination polymers, the connecting nodes are [Cu12Ln6] units, which are interconnected by [Cu2O2] units into two-dimensional structures. Magnetic studies exhibit the existence of weak exchange interactions between the Cu(II) and Ln(III) ions bridged by carboxylate and hydroxy ligands.  相似文献   

19.
The reaction of the lanthanide salts LnI3(thf)4 and Ln(OTf)3 with tris(2-pyridylmethyl)amine (tpa) was studied in rigorously anhydrous conditions and in the presence of water. Under rigorously anhydrous conditions the successive formation of mono- and bis(tpa) complexes was observed on addition of 1 and 2 equiv of ligand, respectively. Addition of a third ligand equivalent did not yield additional complexes. The mono(tpa) complex [Ce(tpa)I3] (1) and the bis(tpa) complexes [Ln(tpa)2]X3 (X = I, Ln = La(III) (2), Ln = Ce(III) (3), Ln = Nd(III) (4), Ln = Lu(III) (5); X = OTf, Ln = Eu(III) (6)) were isolated under rigorously anhydrous conditions and their solid-state and solution structures determined. In the presence of water, 1H NMR spectroscopy and ES-MS show that the successive addition of 1-3 equiv of tpa to triflate or iodide salts of the lanthanides results in the formation of mono(tpa) aqua complexes followed by formation of protonated tpa and hydroxo complexes. The solid-state structures of the complexes [Eu(tpa)(H2O)2(OTf)3] (7), [Eu(tpa)(mu-OH)(OTf)2]2 (8), and [Ce(tpa)(mu-OH)(MeCN)(H2O)]2I4 (9) have been determined. The reaction of the bis(tpa) lanthanide complexes with stoichiometric amounts of water yields a facile synthetic route to a family of discrete dimeric hydroxide-bridged lanthanide complexes prepared in a controlled manner. The suggested mechanism for this reaction involves the displacement of one tpa ligand by two water molecules to form the mono(tpa) complex, which subsequently reacts with the noncoordinated tpa to form the dimeric hydroxo species.  相似文献   

20.
Li JR  Bu XH  Zhang RH 《Inorganic chemistry》2004,43(1):237-244
The reactions of meso-1,2-bis(ethylsulfinyl)ethane (meso-L) with Ln(ClO(4))(3) [Ln(NO(3))(3) or Ln(NCS)(3)] in MeOH and CHCl(3) gave a series of new lanthanide coordination polymers, [[Ln(micro-meso-L)(rac-L)(2)(CH(3)OH)(2)](ClO(4))(3)](n) [Ln: La (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), and Yb (7)], [Yb(micro-meso-L)(1.5)(NO(3))(3)](n) (8), and [La(micro-meso-L)(2.5)(NCS)(3)](n) (9). All the structures were established by single-crystal X-ray diffraction. Complexes 1-7 are isostructural with infinite single micro-chain structure, in which the L ligands take two kinds of coordination modes: bidentate chelating and bis-monodentate bridging. Six sulfur atoms of the sulfoxide groups around each Ln(III) center adopt alternatively the same R or S configuration in the chain. In addition, the configuration change of partial ligands occurred from the meso to the rac form when reacting with Ln(ClO(4))(3). To our knowledge, this is the first example of disulfoxide complexes with two kinds of coordination modes and three kinds of configurations (R,R, S,S, and R,S) occurring simultaneously in the same complex. 8 exhibits single-double bridging chain structure, in which dinuclear macrometallacycles formed through bridging two Yb(III) by two meso-L ligands are further linked by another meso-L ligand. In 9 each La(III) ion is linked to five other La(III) ions by five meso-L ligands to form a 5-connected 2-D (3/4,5) network containing two types of macrometallacyclic arrays: quadrilateral and triangle grids. The structural differences among 1-7, 8, and 9 show that counteranions play important roles in the framework formation of such coordination polymers. In addition, the luminescent properties of 3 and 5 were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号