首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-based symmetric supercapacitors (SCs) are known for their high power density and long cyclability, making them an ideal candidate for power sources in new-generation electronic devices. To boost their electrochemical performances, deriving activated carbon doped with heteroatoms such as N, O, and S are highly desirable for increasing the specific capacitance. In this regard, activated carbon (AC) self-doped with heteroatoms is directly derived from bio-waste (lima-bean shell) using different KOH activation processes. The heteroatom-enriched AC synthesized using a pretreated carbon-to-KOH ratio of 1:2 (ONS@AC-2) shows excellent surface morphology with a large surface area of 1508 m2 g−1. As an SC electrode material, the presence of heteroatoms (N and S) reduces the interfacial charge-transfer resistance and increases the ion-accessible surface area, which inherently provides additional pseudocapacitance. The ONS@AC-2 electrode attains a maximum specific capacitance (Csp) of 342 F g−1 at a specific current of 1 Ag−1 in 1 m NaClO4 electrolyte at the wide potential window of 1.8 V. Moreover, as symmetric SCs the ONS@AC-2 electrode delivers a maximum specific capacitance (Csc) of 191 F g−1 with a maximum specific energy of 21.48 Wh kg−1 and high specific power of 14 000 W kg−1 and excellent retention of its initial capacitance (98 %) even after 10000 charge/discharge cycles. In addition, a flexible supercapacitor fabricated utilizing ONS@AC-2 electrodes and a LiCl/polyvinyl alcohol (PVA)-based polymer electrolyte shows a maximum Csc of 119 F g−1 with considerable specific energy and power.  相似文献   

2.
We have synthesized and characterized perovskite‐type SrCo0.9Nb0.1O3−δ (SCN) as a novel anion‐intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm−3 (and gravimetric capacitance of ca. 773.6 F g−1) at a current density of 0.5 A g−1 while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg−1 with robust long‐term stability.  相似文献   

3.
《先进技术聚合物》2018,29(6):1697-1705
Nanocomposites of gold nanoparticles and polyaniline are synthesized by using HAuCl4 and ammonium peroxydisulfate as the co‐oxidant involving in situ polymerization of aniline and in situ reduction of HAuCl4. Through these in situ methods, the synthesized Au nanoparticles of ca. 20 nm embedded tightly and dispersed uniformly in polyaniline backbone. With the Au content in composite increasing from 4.20 to 24.72 wt.%, the specific capacitance of the materials first increased from 334 to 392 F g−1 and then decreased to 298 F g−1. Based on the real content of PANI in composite material, the highest specific capacitance is calculated to be 485 F g−1 at the Au amount of 19.15 wt.%, which remains 55.6% after 5000 cycles at the current density of 2 A g−1. Finally, the asymmetric supercapacitor of AuNP/PANI||AC and the symmetric supercapacitor of AuNP/PANI||AuNP/PANI are assembled. The asymmetric supercapacitor device shows a better electrochemical performance, which delivers the maximum energy density of 7.71 Wh kg−1 with power density of 125 W kg−1 and maximum power density of 2500 W kg−1 with the energy density of 5.35 Wh kg−1.  相似文献   

4.
Biocarbon-supported polymetallic composites (CAS@Ni3S4/CeO2) were fabricated by a facile hydrothermal process. The as-prepared CAS@Ni3S4/CeO2 materials integrated the advantages of transition metal sulfides (good conductivity), rare-earth metal oxides (excellent stability), as well as porous carbon with high surface area, thus exhibiting promising electrochemical performance in supercapacitor applications. Indeed, the optimal CAS@Ni3S4/CeO2-150 composite displayed a high specific capacitance of 1364 F g?1 and impressive cycle performance with capacitance retention of 93.81 % after 10,000 cycles. The calculation of capacitance contribution showed that the satisfying behavior of the electrode was a combination of the diffusion process and the surface capacitance characteristics. Furthermore, the assembled asymmetric supercapacitor (CAS@Ni3S4/CeO2-150//CAS) delivered an ultrahigh energy density of 102.76 Wh kg?1, which was better than that of the commercial activated carbon-based ASC device. This novel strategy might provide a new perspective for transition metal sulfide/rare earth metal oxide composite in the electrochemical energy storage field.  相似文献   

5.
The design of hierarchical electrodes comprising multiple components with a high electrical conductivity and a large specific surface area has been recognized as a feasible strategy to remarkably boost pseudocapacitors. Herein, we delineate hexagonal sheets-in-cage shaped nickel–manganese sulfides (Ni-Mn-S) with nanosized open spaces for supercapacitor applications to realize faster redox reactions and a lower charge-transfer resistance with a markedly enhanced specific capacitance. The hybrid was facilely prepared through a two-step hydrothermal method. Benefiting from the synergistic effect between Ni and Mn active sites with the improvement of both ionic and electric conductivity, the resulting Ni-Mn-S hybrid displays a high specific capacitance of 1664 F g−1 at a current density of 1 A g−1 and a capacitance of 785 F g−1 is maintained at a current density of 50 A g−1, revealing an outstanding capacity and rate performance. The asymmetric supercapacitor device assembled with the Ni-Mn-S hexagonal sheets-in-cage as the positive electrode delivers a maximum energy density of 40.4 Wh kg−1 at a power density of 750 W kg−1. Impressively, the cycling retention of the as-fabricated device after 10 000 cycles at a current density of 10 A g−1 reaches 85.5 %. Thus, this hybrid with superior capacitive performance holds great potential as an effective charge-storage material.  相似文献   

6.
In this work, we proposed a facile one-pot pyrolysis method to conveniently manufacture lignin-derived carbon materials with graded porous construction for use in supercapacitors. The renewable lignin was selected as precursor, while the potassium citrate was used as a pore-forming agent. The properties of the prepared lignin-derived carbon (LAC) and the performance for supercapacitor application were thoroughly evaluated. The LAC at optimal preparation conditions shows a layered porous structure with a large specific surface area of 3174 cm2 g−1 and pore volume of 2.796 cm3 g−1, where the specific capacitance reach to 241 F g−1 at 1 A g−1 scan rate in 6 M KOH electrolyte solution. At the same time, the specific capacitance remains at 220 F g−1 even at an excessive scan velocity of 20 A g−1, while the capacitance retention is still close to 91.3%. The capacitance retention rate is stable above 95% after 10,000 charge/discharge cycles, which shows the desired long-time stability. All these results demonstrate the outstanding properties of the new prepared LAC material and the considerable application potential in the field of electrical energy storage.  相似文献   

7.
Tungsten oxide/graphene hybrid materials are attractive semiconductors for energy-related applications. Herein, we report an asymmetric supercapacitor (ASC, HRG//m-WO3 ASC), fabricated from monoclinic tungsten oxide (m-WO3) nanoplates as a negative electrode and highly reduced graphene oxide (HRG) as a positive electrode material. The supercapacitor performance of the prepared electrodes was evaluated in an aqueous electrolyte (1 m H2SO4) using three- and two-electrode systems. The HRG//m-WO3 ASC exhibits a maximum specific capacitance of 389 F g−1 at a current density of 0.5 A g−1, with an associated high energy density of 93 Wh kg−1 at a power density of 500 W kg−1 in a wide 1.6 V operating potential window. In addition, the HRG//m-WO3 ASC displays long-term cycling stability, maintaining 92 % of the original specific capacitance after 5000 galvanostatic charge–discharge cycles. The m-WO3 nanoplates were prepared hydrothermally while HRG was synthesized by a modified Hummers method.  相似文献   

8.
Transition-metal phosphates have been widely applied as promising candidates for electrochemical energy storage and conversion. In this study, we report a simple method to prepare a N, F co-doped mesoporous cobalt phosphate with rich-oxygen vacancies by in-situ pyrolysis of a Co-phosphate precursor with NH4+ cations and F anions. Due to this heteroatom doping, it could achieve a current density of 10 mA/cm2 at lower overpotential of 276 mV and smaller Tafel slope of 57.11 mV dec−1 on glassy carbon. Moreover, it could keep 92 % of initial current density for 35 h, indicating it has an excellent stability and durability. Furthermore, the optimal material applied in supercapacitor displays specific capacitance of 206.3 F g−1 at 1 A ⋅ g−1 and maintains cycling stability with 80 % after 3000 cycles. The excellent electrochemical properties should be attributed to N, F co-doping into this Co-based phosphate, which effectively modulates its electronic structure. In addition, its amorphous structure provides more active sites; moreover, its mesoporous structure should be beneficial to mass transfer and electrolyte diffusion.  相似文献   

9.
The design of electrode materials with rational core/shell structures is promising for improving the electrochemical properties of supercapacitors. Hence, hierarchical FeCo2S4@FeNi2S4 core/shell nanostructures on Ni foam were fabricated by a simple hydrothermal method. Owing to their structure and synergistic effect, they deliver an excellent specific capacitance of 2393 F g−1 at 1 A g−1 and long cycle lifespan as positive electrode materials. An asymmetric supercapacitor device with FeCo2S4@FeNi2S4 as positive electrode and graphene as negative electrode exhibited a specific capacitance of 133.2 F g−1 at 1 A g−1 and a high energy density of 47.37 W h kg−1 at a power density of 800 W kg−1. Moreover, the device showed remarkable cycling stability with 87.0 % specific-capacitance retention after 5000 cycles at 2 A g−1. These results demonstrate that the hierarchical FeCo2S4@FeNi2S4 core/shell structures have great potential in the field of electrochemical energy storage.  相似文献   

10.
Rational designing and constructing multiphase hybrid electrode materials is an effective method to compensate for the performance defects of the single component. Based on this strategy, Cu2Se hexagonal nanosheets@Co3Se4 nanospheres mixed structures have been fabricated by a facile two-step hydrothermal method. Under the synergistic effect of the high ionic conductivity of Cu2Se and the remarkable cycling stability of Co3Se4, Cu2Se@Co3Se4 can exhibit outstanding electrochemical performance as a novel electrode material. The as-prepared Cu2Se@Co3Se4 electrode displays high specific capacitance of 1005 F g−1 at 1 A g−1 with enhanced rate capability (56 % capacitance retention at 10 A g−1), and ultralong lifespan (94.2 % after 10 000 cycles at 20 A g−1). An asymmetric supercapacitor is assembled applying the Cu2Se@Co3Se4 as anode and graphene as cathode, which delivers a wide work potential window of 1.6 V, high energy density (30.9 Wh kg−1 at 0.74 kW kg−1), high power density (21.0 Wh kg−1 at 7.50 kW kg−1), and excellent cycling stability (85.8 % after 10 000 cycles at 10 A g−1).  相似文献   

11.
Hybrid materials have obtained well-deserved attention for energy storage devices, because they show high capacitances and high energy densities induced by the synergistic effect between complementary components. Polyoxometalate-based metal–organic frameworks (POMOFs) possess the abundant redox-active sites and ordered structures of polyoxometalates (POMs) and metal–organic frameworks (MOFs), respectively. Here, an asymmetric supercapacitor (ASC) NENU-5/PPy/60//FeMo/C was fabricated in which both its electrodes are prepared from POMOF precursors. A typical POMOF material, NENU-5, was first connected with polypyrrole (PPy) through electrodeposition to form the cathode material NENU-5/PPy. Another representative POMOFs material, PMo12@MIL-100, was carbonized to obtain the anode material FeMo/C. Cathode NENU-5/PPy exhibited an extraordinary capacitance of 508.62 F g−1 (areal capacitance: 2034.51 mF cm−2). In addition, anode FeMo/C shows excellent cyclic stability attributed to its unique structure. Finally, benefiting from the outstanding capacitances and structural merits of the anode and cathode, assembled asymmetric supercapacitor NENU-5/PPy/60//FeMo/C achieves an energy density of 1.12 mWh cm−3 at a power density output of 27.78 mW cm−3, as well as a notable life of 10 000 cycles with an capacity retention of 80.62 %. Thus, the unique ASC is strongly competitive in high capacitance, long cycle life, and high energy-required energy storage devices.  相似文献   

12.
The exploration of the rational design and synthesis of unique and robust architectured electrodes for the high capacitance, rate capability, and stability of supercapacitors is crucial to the future of energy storage technology. Herein, an in situ synthesis of multilayered titanium carbide MXene tightly caging within a 3 D conducting tangled polypyrrole (PPy) nanowire (NW) network is proposed as an effective strategy to prevent the aggregation of MXene, profoundly enhancing the electrochemical performance of the supercapacitor. Owing to the beneficial effects of an ideal 3 D interconnected porous structure and high electrical conductivity, the obtained electrode exhibits fast charge and ion transport kinetics as well as full usage of active material. As expected, the 3 D Ti3C2Tx@PPY NW exhibits a specific capacitance five times higher than that of pristine MXene (610 F g−1), a good rate capability up to a current density of 25 A g−1, and excellent stability with 100 % retention after 14 000 cycles at 4 A g−1, outperforming the known state-of-the-art MXene-based supercapacitor. Our work provides a facile method for enhancing the performance of MXene-based energy storage devices.  相似文献   

13.
Here, the fast and shorter duration synthesis route was proposed for the production of N-doped graphene by supercritical fluid method involving ammonium oxalate as a source of nitrogen. Within the different proportions of graphene oxide and nitrogen source, the nitrogen-doped graphene formed from ammonium oxalate having nitrogen content of 3.3 wt% showed an enriched specific capacitance of 274 Fg?1 at 1 A/g in 20% KOH electrolyte. The long-term stability results obtained from galvanostatic charge-discharge in ammonium oxalate-based N-doped graphene revealed that 90% specific capacitance retention was achieved up to 10,000 cycles at 10 A/g. To examine the device proficiency, a full cell was fabricated and the performance was evaluated in two different approaches. Among the different media in aqueous electrolytes, the fabricated symmetric supercapacitor has achieved a maximum specific capacitance value of 160 F/g at 1 A/g in alkaline medium (20% KOH solution). Between 20% KOH solution and 1 M NaClO4 solution in acetonitrile, the fabricated symmetric supercapacitor exhibits an energy density of 26.5 Wh/kg as well as 5.5 Wh/kg in 1 M sodium perchlorate in acetonitrile solution and 20% KOH solution, respectively.  相似文献   

14.
Oxygen defects and hollow structures positively impact pseudocapacitive properties of diffusion/surface-controlled processes, a component of critical importance when building high-performance supercapacitors. Hence, we fabricated hollow nickel/cobalt molybdate rods with O-defects (D−H−NiMoO4@CoMoO4) through a soft-template and partial reduction method, enhancing D−H−NiMoO4@CoMoO4’s electrochemical performance, yielding a specific capacitance of 1329 F g−1, and demonstrating excellent durability with 95.8 % capacity retention after 3000 cycles. D−H−NiMoO4@CoMoO4 was used as the positive electrode to construct an asymmetric supercapacitor, displaying an energy density of up to 34.13 Wh kg−1 and demonstrating good predisposition towards practical applications. This work presents an effective approach to fabricate and use hollow nickel/cobalt molybdate rods with O-defects as pseudocapacitor material for high-performance capacitive energy storage devices.  相似文献   

15.
A novel hydrogel polymer electrolyte was prepared by incorporation of 1,4-butanediol diglycidyl ether (BG) to cross-linked polyacrylamide (PAM). The electrolyte (PAMBG) was modified with cobalt (II) sulfate with various doping ratios (PAMBGCoX) to increase the capacitance by increasing faradaic reactions. The supercapacitor device assembly was performed by using active carbon (AC) electrodes and hydrogel polymer electrolytes. The specific capacitance of the PAMBGCo5 device indicated 130 F g−1, which is at least a seven-fold improvement due to the insertion of Co as a redox component. The electrolyte device, PAMBGCo5, displays superior performance having an energy density of 38 Wh kg−1 at a power density of 500 W kg−1. Additionally, with the same hydrogel, the device performed 10,000 galvanostatic charge-discharge cycles via retaining 91% of the initial capacitance. A cost-effective electrolyte, PAMBGCo5, was tested in a carbon-based supercapacitor under bent and twisted conditions at various angles, confirming the robustness of the device.  相似文献   

16.
Pliable supercapacitor, yielding specific capacitance (Cs) and energy density as high as 348 F g−1 and 48.3 Wh Kg−1 respectively was fabricated using modified activated carbon electrodes. The nanospheres of activated carbon (AC) were anchored on the nanoplates of boron nitride (BN) by employing the facile technique of pulsed laser ablation in liquid (PLAL) using 532 nm focused laser beam. Four different variants of electrode materials were synthesized by varying the weight percentage (1%, 3%, 5% and 10%) of BN in AC in the PLAL precursor solution. The morphological characteristics, the elemental composition and the structural analysis of the synthesized electrode materials were studied respectively by FESEM, XPS and XRD. The morphological studies indicated that the PLAL synthesis of the electrode materials resulted in proper intercalation of carbon nanospheres into BN nanoplates, which resulted in the observed enhanced performance of the fabricated supercapacitor. Four supercapacitors in this work were fabricated using the four variants of synthesized electrode materials in conjunction with gel polymer electrolyte (GPE). GPE are well known for their non-corrosive nature and best sealing ability to avoid any leakage that results in increasing the cycle life of the device. The performance of the fabricated supercapacitors was evaluated using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) measurement and electrochemical impedance spectroscopy (EIS). The results indicate that the supercapacitor fabricated using 3% BN in AC as electrode material manifested the best specific capacitance and energy density. Also it was found that the supercapacitor maintained 85% of its initial capacitance even after 5000 charge/discharge cycles.  相似文献   

17.
We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid‐state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline–polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g?1). The flexible solid‐state supercapacitor based on PPH provides a large capacitance (306 mF cm?2 and 153 F g?1) and a high energy density of 13.6 Wh kg?1, superior to other flexible supercapacitors. The robustness of the PPH‐based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge–discharge cycles. The high activity and robustness enable the PPH‐based supercapacitor as a promising power device for flexible electronics.  相似文献   

18.
As redox-active based supercapacitors are known as highly desirable next-generation supercapacitor electrodes, the targeted design of two ferrocene-functionalized (Fc(COOH)2) clusters based on coinage metals, [(PPh3)2AgO2CFcCO2Ag(PPh3)2]2 ⋅ 7 CH3OH (SC1: super capacitor) and [(PPh3)3CuO2CFcCO2Cu(PPh3)3] ⋅ 3 CH3OH (SC2), is reported. Both structures are fully characterized by various techniques. The structures are utilized as energy storage electrode materials, giving 130 F g−1 and 210 F g−1 specific capacitance at 1.5 A g−1 in Na2SO4 electrolyte, respectively. The obtained results show that the presence of CuI instead of AgI improves the supercapacitive performance of the cluster. Further, to improve the conductivity, the PSC2 ([(PPh3)2CuO2CFcCO2]), a polymeric structure of SC2, was synthesized and used as an energy storage electrode. PSC2 displays high conductivity and gives 455 F g−1 capacitance at 3 A g−1. The PSC2 as a supercapacitor electrode presents a high power density (2416 W kg−1), high energy density (161 Wh kg−1), and long cycle life over 4000 cycles (93 %). These results could lead to the amplification of high-performance supercapacitors in new areas to develop real applications and stimulate the use of the targeted design of coordination polymers without hybridization or compositions with additive materials.  相似文献   

19.
To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3O4 and Co3S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3O4@Co3S4 nanocomposite, the nanostructure of Co3S4 was fabricated from Co3O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm−2 (5651.24 F g−1) at a current density of 6 mA cm−2 compared to the Co3O4/rGO/NF electrode with a capacitance of 3.06 F cm−2 (1230.77 F g−1) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg−1, specific power density of 6048.03 W kg−1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s−1). Finally, by using Co3O4 @Co3S4/rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm−2 at the applied current density of 1 mA cm−2, and delivered an energy density of 0.143 Wh kg−1 at the power density of 5.42 W kg−1.  相似文献   

20.
Inspired by the spongy bone structures, three-dimensional (3D) sponge-like carbons with meso-microporous structures are synthesized through one-step electro-reduction of CO2 in molten carbonate Li2CO3−Na2CO3−K2CO3 at 580 °C. SPC4-0.5 (spongy porous carbon obtained by electrolysis of CO2 at 4 A for 0.5 h) is synthesized with the current efficiency of 96.9 %. SPC4-0.5 possesses large electrolyte ion accessible surface area, excellent wettability and electronical conductivity, ensuring the fast and effective mass and charge transfer, which make it an advcanced supercapacitor electrode material. SPC4-0.5 exhibits a specific capacitance as high as 373.7 F g−1 at 0.5 A g−1, excellent cycling stability (retaining 95.9 % of the initial capacitance after 10000 cycles at 10 A g−1), as well as high energy density. The applications of SPC4-0.5 in quasi-solid-state symmetric supercapacitor and all-solid-state flexible devices for energy storage and wearable piezoelectric sensor are investigated. Both devices show considerable capacitive performances. This work not only presents a controllable and facile synthetic route for the porous carbons but also provides a promising way for effective carbon reduction and green energy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号