首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A series of novel bismaleimides (BMIs) were prepared from maleic anhydride and polyurethane prepolymers based on MDI (4,4′-diphenylmethane diisocyanate) and polyether and polyester diols with various chain lengths. All the BMIs were characterized by IR, 1H-NMR, and elemental analysis. DSC studies indicated that the thermal polymerization of the BMIs could be carried out in the temperature range of 102–245°C, and that curing behavior was significantly affected by the molecular weight of the BMIs. The crosslinked BMI elastomers showed good mechanical properties and much better thermal stability than that of the traditional polyurethane elastomers. The glass transition temperatures, mechanical, and dynamic mechanical properties were dependent on the types of polyols used and the resultant crosslink densities due to various chain lengths of the BMIs. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
[In(dm4bt)Cl3(MeOH)]?·?0.5dm4bt (1) (dm4bt is 2,2′‐dimethyl‐4,4′‐bithiazole) and [In(4bt)Cl3(MeOH)] (2) (4bt is 4,4′‐bithiazole) were prepared from the reaction of 4,4′‐bithiazole and 2,2′‐dimethyl‐4,4′‐bithiazole with InCl3?·?4H2O in methanol, respectively. [In(4bt)Cl3(DMSO)] (3) was also prepared from recrystallization of 2 in DMSO. These complexes were characterized by IR, UV‐Vis, 1H NMR, 13C{1H} NMR, and luminescence spectroscopy and their structures were studied by single‐crystal X‐ray crystallography. The thermal stabilities of 1 and 3 were studied by thermogravimetric and differential thermal analyses.  相似文献   

3.
《European Polymer Journal》2006,42(8):1786-1797
New aliphatic–aromatic α,ω-diols containing sulfur in aliphatic chain: 4,4′-(ethane-1,2-diyl)bis(benzenethioethanol) [EBTE], 4,4′-(ethane-1,2-diyl)bis(benzenethiopropanol) [EBTP], 4,4′-(ethane-1,2-diyl)bis(benzenethiohexanol) [EBTH], 4,4′-(ethane-1,2-diyl)bis(benzenethiodecanol) [EBTD], and 4,4′-(ethane-1,2-diyl)bis(benzenethioundecanol) [EBTU] were prepared by the condensation reaction of 4,4′-(ethane-1,2-diyl)bis(benzenethiol) with suitable halogen alcohols in aqueous sodium hydroxide solution. Thermoplastic nonsegmented polyurethanes containing sulfide linkages were synthesized from these diols, and hexane-1,6-diyl diisocyanate (HDI) or 4,4′-methylenediphenyl diisocyanate (MDI) by solution and melt polymerization. The reaction was carried out at 1:1 or 1.05:1 molar ratios of isocyanate and hydroxy groups in the presence of dibutyltin dilaurate as a catalyst.The structures of the diols were determined by using elemental analysis, FTIR and 1H NMR spectroscopy, and X-ray diffraction analysis. Thermal characteristics of the diols were determined by using differential scanning calorimetry (DSC). The polymers were studied to describe their structures and physicochemical, thermal (by DSC and thermogravimetric analysis) and tensile properties as well as Shore A/D hardness.All the polyurethanes possessed partially crystalline structures. Their melting temperatures were in the range of 94–179 °C (HDI) and 105–207 °C (MDI). The MDI-based polyurethanes showed higher tensile strengths, up to ∼50 MPa.  相似文献   

4.
Attempts were made to synthesize poly(ether-sulfone)s from aliphatic diols or bissilylated diols on the one hand, and 4,4′-dichlorodiphenylsulfone or 4,4′-difluorodiphenylsulfone on the other hand. The reaction conditions and the catalyst were varied. Polycondensations of silylated diols with 4,4′-difluorodiphenylsulfone and powdered K2 CO3 in N-methylpyr-rolidone proved to give the best results. Using silylated isosorbide and isomannide as mono-mers chiral poly(ether-sulfone)s were prepared. GPC measurements indicate weight-average molecular weights in the range of 27×103–200×103. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Two lead(II)-thiocyanato coordination polymers with 5,5′-dimethyl-2,2′-bipyridine (5,5′-dm-2,2′-bpy) and 4,4′-dimethoxy-2,2′-bipyridine (4,4′-dmo-2,2′-bpy) as chelating ligands were synthesized and characterized by elemental analysis, IR and 1H-NMR spectroscopy, thermal behavior, and X-ray crystallography. These complexes have formulas [Pb(5,5′-dm-2,2′-bpy)(NCS)2] n (1) and [Pb(4,4′-dmo-2,2′-bpy)(NCS)2] n (2). The coordination numbers of PbII in 1 and 2 are four, PbN4, with “stereo-chemically active” electron pairs and hemidirected coordination spheres. Considering Pb···S as weak bonds, 1 and 2 are 1- and 2-D coordination polymers, respectively. The supramolecular features in these complexes are guided/controlled by weak directional intermolecular interactions.  相似文献   

6.
Two substituted 2,2′-bipyridine lead(II) complexes, [Pb(5,5′-dm-2,2′-bpy)(tfac)2] n (1) (5,5′-dm-2,2′-bpy?=?5,5′-dimethyl-2,2′-bipyridine and tfac?=?trifluoroacetate) and [Pb2(4,4′-dmo-2,2′-bpy)2(ftfa)4] (2) (4,4′-dmo-2,2′-bpy?=?4,4′-dimethoxy-2,2′-bipyridine and ftfa?=?furoyltrifluoroacetonate), have been synthesized and characterized by elemental analysis, IR, 1H NMR, and 13C NMR spectroscopies, thermal behavior, and X-ray crystallography. Complexes 1 and 2 are 1D coordination polymer and dinuclear complex, respectively. The supramolecular features in these complexes are guided by weak directional intermolecular interactions.  相似文献   

7.
Two Zn(II) coordination polymers, {[Zn3(L)2(bipy)2(H2O)4}n (1) and {[Zn(HL)(4,4′-bibp)}n (2), were obtained from Zn(II) nitrate, a tricarboxylate ligand (H3L) and different N-containing ligands with hydrothermal conditions, where H3L = 4-((6-carboxynaphthalen-2-yl)oxy)phthalic acid, bipy = 4,4′-bipyridine, and 4,4′-bibp = 4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl. Single-crystal X-ray analysis reveals that 1 has a 2-D layer framework formed by L3? and bipy and 2 has an infinite 1-D structure with Zn2 units built by 4,4′-bibp ligands. The phase purity, IR spectra, thermal stabilities, and fluorescence properties in the solid state of 1 and 2 were investigated. Moreover, 1 and 2 were chosen as fluorescent probes to sense different metal ions, showing selective response to Fe3+ ion through luminescence quenching. The possible sensing mechanism to Fe3+ ion is also discussed.  相似文献   

8.
A new phosphorus‐containing polycyclic bismaleimide resin (BMPI) was prepared by the reaction of bis(3‐maleimidophenyl) methylphosphine oxide (BAMP) with benzene‐1,2,4,5‐tetracarboxylic dianhydride (BTD) and maleic anhydride (MA). BMPI was confirmed by infrared (IR), 1H‐ and 13C‐NMR spectroscopies. Its thermal properties were carried out by a differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) that revealed that the polymers have excellent thermal properties in the high temperature region and a high char yield of up to 53~65%. Furthermore, three conventional bismaleimide resins were prepared from different phosphorus‐free bismaleimides for comparison, e.g. 4,4′‐bismaleimidodiphenylmethane (BDM), 4,4′‐bismaleimidodiphenylether (BDE), 4,4′‐bismaleimidodiphenylsulfone (BDS).  相似文献   

9.
Nanoparticles of a Bi(III) coordination polymer, {[Bi(μ-4,4′-bipy)Br4] · (4,4′-Hbipy)} n (1) (4,4′-bipy = 4,4′-bipyridine), were synthesized by a sonochemical method. The new nanoparticles were characterized by scanning electron microscopy, X-ray powder diffraction (XRD), IR spectroscopy, and elemental analyses. Compound 1 was structurally characterized by single-crystal X-ray diffraction. The thermal stabilities of 1 as bulk and at nanosize were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The Bi2O3 and BiBr3 nanostructures were obtained by calcinations of nanostructure of 1 in air and argon.  相似文献   

10.
Abstract

A novel cyclotriphosphazene-based epoxy monomer, hexa-[4-(glycidyloxycarbonyl) phenoxy]cyclotriphosphazene (HGCP), was synthesized via a four-step synthetic route, and fully characterized by 1H, 13C, and 31P NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Thermosetting systems based on HGCP with three curing agents, for example, 4,4′-diaminodiphenylsulfone (DDS), 4,4′-diaminodiphenylmethane (DDM), and dicyandiamide (DICY), were used for making a comparison of their thermal curing behaviors. The curing behaviors were measured by differential scanning calorimetry. Moreover, flame retardancy of HGCP thermosetting systems was estimated by Limiting Oxygen Index (LOI) and Vertical Burning Test (UL-94). The resulting HGCP thermosetting systems exhibited better flame retardancy than the common epoxy resins diglycidyl ether of bisphenol A (DGEBA) and the regular brominated bisphenol A epoxy resin (TBBA) cured by DDS, respectively. When HGCP was cured by DDS, its thermosetting system gave the most char residues, met the UL-94 V-0 classification, and had a limiting oxygen index value greater than 35.  相似文献   

11.
A new type of epoxy resin containing 4,4′-diphenylether moiety in the backbone (2) was synthesized, and was confirmed by gel permeation chromatography, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. In addition, in order to evaluate the influence of 4,4′-diphenylether moiety in the structure, epoxy resins having 4,4′-biphenylene moiety (4) and having 1,4-phenylene moiety (6) in place of 4,4′-diphenylether moiety were synthesized. The cured polymer obtained through the curing reaction between the new diphenylether-containing epoxy resin and phenol novolac was used for making a comparison of its thermal and physical properties with those obtained from 4, 6, and bisphenol-A (4,4′-isopropylidenediphenol) type epoxy resin. The cured polymer obtained from 2 showed markedly higher anaerobic char yield at 700°C of 44.0 wt %, higher fracture toughness, and higher mechanical strength and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3687–3693, 1999  相似文献   

12.
Two supramolecular compounds based on Keggin-type polyoxometalates (POMs), (4,4′-H2bpy)(4,4′-Hbpy)[PMo12O40] (1) and (4,4′-H2bpy)(4,4′-Hbpy)2[SiW12O40]?·?4H2O (2), have been synthesized hydrothermally and characterized by elemental analyses, IR, UV-Vis, XPS spectra, thermogravimetric analyses, and single-crystal X-ray diffraction analyses. The two compounds consist of 4,4′-bipyridine (4,4′-bpy) ligands and different Keggin-type POMs which are [PMo12O40]3? for 1 and [SiW12O40]4? for 2. There are hydrogen-bonding interactions between the POMs, 4,4′-bipyridine, and/or water in 1 and 2. In addition, 2 contains an uncommon (H2O)2 water cluster.  相似文献   

13.
Two new supramolecular compounds [M(4,4′-bipy)2 (H2O)4] ·?(4,4′-bipy)2 ·?(3,5-daba)2 ·?8H2O (M=Zn(1) or Mn(2), 4,4′-bipy =?4,4′-bipyridine, 3,5-daba =?3,5-diaminobenzoic acid anion) were synthesized and characterized by elemental analysis and X-ray crystal diffraction. In [M(4,4′-bipy)2(H2O)4]2+, the M(II) is coordinated by two nitrogen atoms from two 4,4′-bipy molecules and four oxygen atoms from four waters to form an octahedral configuration. There exist uncoordinated 4,4′-bipy molecules, 3,5-diaminobenzolate counterions and water guests in the compounds. The 3D structures of the title supramolecular compounds are constructed by rich hydrogen bonds among [M(4,4′-bipy)2(H2O)4]2+, uncoordinated 4,4′-bipy molecules, water molecules and 3,5-daba, containing a diverting hexa-member water ring.  相似文献   

14.
Three inorganic–organic hybrid materials based on Keggin-type polyoxometalates (POMs), [CuII2(phen)2(4,4′-bipy)(H4,4′-bipy)2(H2O)2][PMo12O40]2·2H2O (1), [CuII(phen)2(H4,4′bipy)][PW12O40]·H2O (2), and [CuII2(phen)2(4,4′-bipy)(BW12O40)(H2O)2](H24,4′-bipy)0.5·3H2O (3) (phen = 1,10-phenanthroline, 4,4′-bipy = 4,4′-bipyridine), were synthesized using different POMs in the hydrothermal conditions. Compounds 1–3 were characterized by single-crystal X-ray diffraction, IR spectra, elemental analyses, powder X-ray diffraction analyses, and thermogravimetric analyses. Compound 1 presents a two-dimensional (2-D) network containing the Keggin-type [PMo12O40]3? anion and dinuclear metal–organic units [CuII2(phen)2(4,4′-bipy)(H4,4′-bipy)2(H2O)2]3+. Compound 2 is a 2-D architecture constructed from a [PW12O40]3? and mononuclear metal–organic units [CuII(phen)2(H4,4′-bipy)]3+. In 3, the [BW12O40]5? anions link [CuII2(phen)2(4,4′-bipy)] units to form a one-dimensional (1-D) chain [CuII2(phen)2(4,4′-bipy)(BW12O40)(H2O)2]; the 1-D chain connects with protonated 4,4′-bipy ligands and lattice waters, yielding a 2-D layer. Fluorescence spectra, UV–vis spectra, and electrochemical properties of 1–3 have been investigated.  相似文献   

15.
Two new supramolecular compounds, [Zn2(L)3(4,4′-bpy)(OH)]n (1) and [Cd(L)2(2,2′-bpy)(H2O)]·2H2O (2) (HL?=?2-(4-isopropylbenzoyl)benzoic acid, 4,4′-bpy?=?4,4′-bipyridine, 2,2′-bpy?=?2,2′-bipyridine), have been hydrothermally synthesized and characterized by elemental analysis, infra-red spectroscopy, thermal gravimetric analyzes, and single-crystal X-ray diffraction. 1 exhibits 1-D chain and 2 is 0-D mononuclear. They are both linked into 2-D supramolecular layers by non-covalent interactions. Luminescence properties were also investigated.  相似文献   

16.
[Fe(dmbipy)Cl4][dmbipyH], 1 (dmbipy is 4,4′-dimethyl-2,2′-bipyridine), was prepared from reaction of FeCl3 · 6H2O with 4,4′-dimethyl-2,2′-bipyridine in 0.1 molar aqueous HCl. Treatment of 1 with dimethyl sulfoxide in methanol produced [Fe(dmbipy)Cl3(DMSO)], 2 (DMSO is dimethyl sulfoxide). Both complexes were characterized by IR, UV-vis, and 1H-NMR spectroscopies and their structures were studied by single crystal diffraction. Compounds 1 and 2 are high-spin with spin multiplicity of six.  相似文献   

17.
A one-dimensional (1-D) organic–inorganic hybrid compound {(H3O)[CuI(4,4′-bipy)]3[SiW12O40]} · 1.5H2O (1) has been synthesized from hydrothermal reaction of Keggin polyoxometalate, cupric nitrate and 4,4′-bipyridine (4,4′-bipy). Single crystal X-ray diffraction shows 1-D zigzag chains built up of saturated Keggin polyoxoanions and infinite [CuI(4,4′-bipy)] n n + units. Zipper-like arrangement of adjacent zigzag chains by hydrogen-bonding interactions leads to a 2-D layer and π–π interactions of 4,4′-bipy ligands from adjacent layers further result in the 3-D structure of 1. All Cu atoms in 1 are three-coordinated with “T-type” geometries, indicating they are univalent in the resultant compound. This result has further been confirmed by the absence of signal in the EPR spectrum of 1.  相似文献   

18.
Bismaleimides containing ester, amide, urethane, and imide groups in the backbone were synthesized from maleimido benzoic acid via its acid chloride or isocyanate with 4,4′-dihydroxy-diphenyl-2,2-propane, 3,3′-diamino diphenyl sulfone, and 3,3′,4,4′-benzophenone tetracarboxylic acid anhydride by simple condensation or addition reaction. The new bismaleimides are characterized by IR, 1H-NMR, and elemental analysis. DSC studies of these bismaleimides indicated a curing exotherm in the temperature range 150–270°C with heat of polymerization 30–50 J/g. Thermogravimetric analysis of the uncured resins showed high thermal stability and char yield for imide containing bismaleimide. The observed char yields of the bismaleimide resins are in accordance with the calculated C/H ratios.  相似文献   

19.
Two polypyridine ruthenium(II) complexes, [Ru(dmp)2(MCMIP)]2+ (1) (MCMIP = 2-(6-methyl-3-chromonyl)imidazo[4,5-f][1,10]-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline) and [Ru(dmb)2(MCMIP)]2+ (2) (dmb = 4,4′-dimethyl-2,2′-bipyridine), have been synthesized and characterized by elemental analysis, ES-MS and 1H NMR. The DNA-binding behaviors of these complexes were investigated by electronic absorption titration, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The results show that 1 and 2 effectively bind to CT-DNA; the DNA-binding affinities are closely related to the ancillary ligand.  相似文献   

20.
4,4′-(p-phenylenediacryloyloxy)-dibenzoyl chloride was polycondensed at 220°C with several diols in order to obtain liquid-crystalline polymers. The mesomorphic properties were studied by optical microscopy and differential scanning calorimetry. Gelation due to thermal crosslinking occurred at higher temperatures. With the exception of 2,2′-biphenyldiol derivative, all the polymers derived from aliphatic diols, dihydroxy ethers and aromatic diphenols exhibit mesogenic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号