首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of [RhCl(CO) ( 1 )] and [PdCl2 ( 1 )], where 1 is the bidentate ligand (C6H5)2P·CH2·C18H10· CH2·P(C6H5)2, have been determined from threedimensional X-ray counter data collected on single crystals of the C6H5·CN solvates. The two compounds are isomorphous and crystallize in the triclinic system, space group P 1 , Z = 2: a = 14.580 (8), b = 13.029 (10), c = 11.909 (6) Å, α = 106.33 (5), β = 100.47 (4), γ = 95.73 (5)° for the rhodium complex; a = 14.361 (5), b = 13.044 (7), c = 11.897 (4) Å, α = 105.97 (4), β = 100.27 (3), γ = 94.76 (4)°, for the palladium complex. In both complexes the metal atom is four-coordinate with slightly distorted square-planar configuration. In both cases the ligand 1 spans trans positions with M-P bond lengths in the ranges of the literature data. Also the other bond distances fall in regular ranges. Ligand 1 has almost the same conformation in both complexes and is characterized by a strong out-of-plane deformation of the benzophenanthrene system as a consequence of severe overcrowding.  相似文献   

2.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

3.
Synthesis and Crystal Structures of [P(C6H5)4][1-(NH3)B10H9] and Cs[(NH3)B12H11] · 2CH3OH The reduction of [1-(NO2)B10H9]2? with aluminum in alkaline solution yields [1-(NH3)B10H9]? and by treatment of [B12H12]2? with hydroxylamine-O-sulfonic acid [(NH3)B12H11]? is formed. The crystal structures of [P(C6H5)4][1-(NH3)B10H9] (triclinic, space group P1 , a = 7.491(2), b = 13.341(2), c = 14.235(1) Å, α = 68.127(9), β = 81.85(2), γ = 86.860(3)°, Z = 2) and Cs[(NH3)B12H11] · 2CH3OH (monoclinic, space group P21/n, a = 14.570(2), b = 7.796(1), c = 15.076(2) Å, β = 111.801(8)°, Z = 4) reveal for both compounds the bonding of an ammine substituent to the cluster anion.  相似文献   

4.
Three new alkali metal transition metal sulfate‐oxalates, RbFe(SO4)(C2O4)0.5 · H2O and CsM(SO4)(C2O4)0.5 · H2O (M = Mn, Fe) were prepared through hydrothermal reactions and characterized by single‐crystal X‐ray diffraction, solid state UV/Vis/NIR diffuse reflectance spectroscopy, infrared spectra, thermogravimetric analysis, and powder X‐ray diffraction. The title compounds all crystallize in the monoclinic space group P21/c (no. 14) with lattice parameters: a = 7.9193(5), b = 9.4907(6), c = 8.8090(6) Å, β = 95.180(2)°, Z = 4 for RbFe(SO4)(C2O4)0.5 · H2O; a = 8.0654(11), b = 9.6103(13), c = 9.2189(13) Å, β = 94.564(4)°, Z = 4 for CsMn(SO4)(C2O4)0.5 · H2O; and a = 7.9377(3), b = 9.5757(4), c = 9.1474(4) Å, β = 96.1040(10)°, Z = 4 for CsFe(SO4)(C2O4)0.5 · H2O. All compounds exhibit three‐dimensional frameworks composed of [MO6] octahedra, [SO4]2– tetrahedra, and [C2O4]2– anions. The alkali cations are located in one‐dimensional tunnels.  相似文献   

5.
This paper reports two lanthanide complexes of formula (C_9H_7)Ln(C_8H_8)·(THF)_2 whereLn is Pr or Nd,C_9H_7 is indenyl,and C_8H_8 is cyclooctatetraene (COT).The complexes were preparedby the reaction of LnCl_3 with K(C_9H_7) and K_2(C_8H_8) in THF.(C_9H_7)Pr(C_8H_8)·(THF)_2 crystallizes inTHF at - 15℃ in the monoclinic space group P2_1:with unit cell dimensions a=8.446(0),b=10.083(2),c=13.407(3),β=105.48(1)°,V=1100.43(35)~3,Dc=1.52g/cm~3 and Z=2.The final R valueis 0.033,R_w value is 0.030,respectively.In (C_9H_7)Pr(C_8H_8)·(THF)_2 a five-membered ring centroid ofC_9H_7,the C_8H_8 ring centroid and the two oxygen atoms from the two THF molecules form a distortedtetrahedral geometry around the metal.  相似文献   

6.
Reactions of PtCl2(cod) (cod = cycloocta‐1,5‐diene) with 2,4,6‐trifluoro‐ and 2,3,4,5‐tetrafluoro‐phenyllithium in diethyl ether gives Pt(C6H2F3‐2,4,6)2(cod) ( 1 ) (monoclinic, P21/n, Z = 4, a = 7.141(1), b = 15.002(2), c = 17.071(3) Å, β = 91.37(2)°) and Pt(C6HF4‐2,3,4,5)2(cod) ( 2 ) (triclinic, P 1, Z = 2, a = 10.150(2), b = 10.762(2), c = 10.812(2) Å, α = 63.606(3), β = 63.327(3), γ = 76.496(3)°) respectively, which have two ipso carbon atoms and two double bond midpoint centres in a square planar arrangement, and aromatic rings angled near perpendicular to the coordination plane.  相似文献   

7.
Formation of Octahedral Complexes via cis-Addition to Square Planar Bis (oxamideoximato)nickel(II): Three Structure Examples In the reaction of orange square planar bis(oxamide oximato)nickel(II) with acids, blue to blue-green octahedral complexes are formed with neutral oxamide oximide ligands and two acid anions in cis-positions. Three compounds are described: cis-dichlorobis(oxamide oxime)nickel(II) ( 1 ), NiCl2(C2H6N4O2)2, Mr = 365.81, monoclinic P21/n, a = 6.641(2), b = 14.086(4), c = 13.473(3) Å, β = 96.26(2)°, V = 1 252.8 Å3, Z = 4, dc = 1.94 gcm?3, final Rw = 0.031 for 4090 reflections. In cis-di(sulfanilato)bis(oxamide oxime)nickel(II) dihydrate ( 2 ) one sulfanilic anion coordinates via the sulfonic acid group, the other one via the amino group; Ni(C6H6NO3S)2(C2H6N4O2)2 · 2 H2O, Mr = 675.30, monoclinic P21, a = 6.879(3), b = 14.305(5), c = 13.930(5) Å, β = 103.62(4)°, V = 1332 Å, Z = 2, dc = 1.68 gcm?3, R = 0.067 for 2693 reflections. In catena-μ-(phthalato)bis(oxamide oxime)nickel(II) tetrahydrate ( 3 ) bidentate bridging phthalate anions lead to chain formation; Ni(C8H4O4)(C2H6N4O2)2 · 4H2O, Mr = 531.09, monoclinic P21/c, a = 10.633(8), b = 11.324(5), c = 17.680(14) Å, β = 98.25(7)°, V = 2107 Å3, Z = 4, dc = 1.67 gcm?3. Final R = 0.110 for 3290 reflections.  相似文献   

8.
In order to correlate 119Sn Mössbauer parameters and structural data for dimethyltin(IV) derivatives, the molecular structures of bis(acetato)dimethyltin(IV) and bis(trifluoroacetato)dimethyltin(IV) were determined by single crystal X-ray diffration. Crystals of Me2Sn(OOCCH3)2 are monoclinic, a = 26.282(4), b = 5.282(1), c = 14.434(3) Å, β = 101.17(2)°, Z = 8, space group C2/c, and those of [Me2Sn(OOCCF3)2]n are monoclinic, a = 8.444(1), b = 17.689(1), c = 15.368(1) Å, β = 93.013(9)°, Z = 8, space group Cc. The structures were solved by the Patterson method and were refined by full-matrix least-squares procedures to R = 0.025 and 0.027 (Rw = 0.023 and 0.030) for 2 298 and 4 182 reflections with I ≥ 3σ(F2), respectively.  相似文献   

9.
The reactions of [Re(CO)5Cl] with the ligands tpy (2,2′:6′,2″-terpyridine), py3N {tris(2-pyridyl)-amine}, py3CH {tris(2-pyridyl)methane}, and py3P {tris(2-pyridyl)phosphine} in toluene solution realize compounds with the general formulation [Re(ligand)(CO)3Cl] in which the tripyridyl ligands are bidentate. X-ray structural determinations of fac-[Re(typ)(CO)3Cl].H2O and fac-[Re(py3N)(CO)3Cl] confirm these assignments. [Re(tpy)(CO)3Cl].H2O (C18H13ClN3O4Re) is monoclinic, space group P21/n, with cell dimensions a = 7.432(2) Å, b = 17.016(4) Å, c = 14.466(2) Å, β = 93.51(2)°, and Z = 4; full-matrix least-squares refinement on 2435 reflections with I ? 2.5σ(I) converged to a final R = 0.028 and Rw = 0.029. [Re(py3N)(CO)3Cl] (C18H12ClN4O3Re) is triclinic, space group P1 with cell dimensions a = 13.761(2) Å, b = 14.636(6)Å, c = 11.110(2) Å, α = 110.70(2)°, β = 102.45(2)°, γ = 107.48(2)°, and Z = 4; full-matrix least-squares refinement on 3459 reflections with I ? 2.5σ(I) converged to a final R = 0.038 and Rw = 0.039. If the synthetic procedure is undertaken under irradiation by visible light, for the ligand py3N a species [Re(py3N)(CO)2Cl] (characterized by infrared spectroscopy and conductance measurements) is also formed, in which the ligand py3N is tridentate. No analogous tridentate species is formed with the ligands tpy or py3P, although there is evidence that it also forms for py3CH.  相似文献   

10.
[Ni(phen)2(H2O)Br]Br·3H2O where phen is 1,10-phenanthroline, is a light-blue material which crystallizes in the monoclinic space group P21/c with Z = 4, a = 10.4300(4), b = 25.310(2), c = 9.7790(9)?Å and β = 102.932(6)°. The structure was determined at ambient temperature from 5161 reflections with R = 0.0643 and R w = 0.1306. The structure consists of a complex cation, a bromide anion and three waters of hydration. The Ni atom is pseudo-octahedral with a cis arrangement of Br and H2O. This cis geometry persists in solution, as evidenced by 1H NMR spectroscopy, although the Br may be replaced by another H2O. [Ni(phen)3]Br2·8H2O is a light-red material which crystallizes in the monoclinic space group C2/m with Z = 8, a = 23.6320(11), b = 21.4880(13), c = 15.5470(9)?Å and β = 107.927(3)°. The structure was determined at 120?K from 6820 reflections with R = 0.0733 and R w = 0.1022. The structure consists of a complex cation, two bromide anions and eight waters of hydration. The anions and waters are extensively disordered. The Ni atom is pseudo-octahedral.  相似文献   

11.
Two new hybrid fluorides, {[(C2H4NH3)3NH]4+}2 · (H3O)+ · [Al7F30]9– ( I ) and {[(C2H4NH3)3NH]4+}2 · [Al7F29]8– · (H2O)2 ( II ), are synthesized by solvothermal method. The structure determinations are performed by single crystal technique. The symmetry of both crystals is triclinic, sp. gr. P 1, I : a = 9.1111(6) Å, b = 10.2652(8) Å, c = 11.3302(8) Å, α = 110.746(7)°, β = 102.02(1)°, γ = 103.035(4)°, V = 915.9(3) Å3, Z = 1, R = 0.0489, Rw = 0.0654 for 2659 reflections, II : a = 8.438(2) Å, b = 10.125(2) Å, c = 10.853(4) Å, α = 106.56(2)°, β = 96.48(4)°, γ = 94.02(2)°, V = 877.9(9) Å3, Z = 1, R = 0.0327, Rw = 0.0411 for 3185 reflections. In I , seven corner‐sharing AlF6 octahedra form a [Al7F30]9– anion with pseudo 3 symmetry; such units are found in the pyrochlore structure. The aluminum atoms lie at the corners of two tetrahedra, linked by a common vertex. In II , similar heptamers are linked in order to build infinite (Al7F29)n8– chains oriented along a axis. In both compounds, organic moieties are tetra protonated and establish a system of hydrogen bonds N–H…F with four Al7F309– heptamers in I and with three inorganic chains in II .  相似文献   

12.
Abstract

It has been shown that host compound 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol is able to include polar guests and now we report on its ability to form clathrate compounds with apolar guests. The structures of this host with cyclohexane (1) and the ortho (2), meta (3) and para (4) xylenes have been determined and are discussed. Crystal data: (1) 2C30H22O2C6H12, M r = 913.20 g mol?1, mono-clinic, C2/c, a = 22.851(6), b = 14.010(2), c = 17.076(6) Å, β = 108.71(3)°, V = 5178(2) Å3, Z = 4, D c = 1.17g cm?3, N = 3326, R = 0.092. (2) 2C30H22O21 ½C8H10, M r = 1976.5 g mol?1, triclinic, P 1, a = 13.185(3), b = 15.466(3), c = 16.573(2) Å, α = 96.39(13)°, β = 106.96(15)°, γ = 114.94(18)°, V = 2822(2) Å3, Z = 2, D c = 1.16 g cm?3, N = 6152, R = 0.075. (3) 2C30H22O21 ½C8H10, M r = 1976.5 g mol?1, triclinic, P 1, a = 13.267(5), b = 15.453(3), c = 16.654(5) Å, α = 97.12(2)°, β = 107.09(3)°, γ = 114.68(3)°, V = 2843(2) Å3, Z = 2, D c = 1.15 g cm?3, N = 6505, R = 0.083. (4) 2C30H22O21 ½C8H10, M r = 1976.5 g mol?1, triclinic, P 1, α = 13.070(2), b = 15.348(3), c = 16.776(3) Å, α = 67.88<2)°, β = 74.27(1)°, γ = 65.29(1)°, V = 2817(1) Å3, Z = 2, D c = 1.15 g cm?3, N = 6711, R = 0.050. Thermal analysis studies were also performed in order to examine their stability and the strength with which the guest species are held in the crystal lattice.  相似文献   

13.
Abstract

The reaction of two equivalents of NaSH with MCl2(dmpe)2 (M = Cr, Fe,) at—78°C gives trans-M(SH)2(dmpe)2 (M = Cr, (1), 30%; Fe, (2) 98%). The complexes have been characterized spectroscopically, and the trans geometry has been confirmed by single crystal X-ray diffraction studies. Crystal data (1): C12H34CrP4S2, M= 418.42, monoclinic, P21/n, a = 8.857 (I), b= 12.719 (2), c = 9.648 (I) Å, β = 92.14(1)°, U= 1086.2 (5)Å, D c = 1.279gcm?3, Z = 2, λ(MoKa) = 0.71073 Å, (graphite mono-chromator), μ(MoKa) = 9.80cm?1. Methods: MULTAN, difference Fourier, full-matrix least-squares. Refinement of 1149 reflections (I > 3σ(I)) out of 1901 unique observed reflections (3.0° < 29 < 48.0°) gave R and R w values of 0.092 and 0.096, respectively. Crystal data (2): C12H34FeP4S2, M = 422.28, monoclinic, P21/n, a = 8.834 (2), b = 12.594 (2), c = 9.532 (2) Å, β = 90.66 (2)°, U = 1060.3 (5) Å3, D c = 1.323 g cm?3, Z = 2, γ(MoKa) = 0.71073 Å, (graphite monochromator), μ(MoKa) = 11.87 cm?1. Methods: same as for (1). Refinement of 1178 reflections (I > 3σ (I)) out of 2086 unique observed reflections (2.0° < 20 < 50.0°) gave R and R w values of 0.056 and 0.059, respectively.  相似文献   

14.
Single crystals of two new modifications of [P(C6H5)4]2[Cu2I4] were obtained by reaction of granulated copper with iodine and [P(C6H5)4]I in dry acetone under nitrogen atmosphere. They crystallise monoclinically, space group P21/n (No. 14), a = 11.550(6), b = 7.236(2), c = 27.232(13) Å, β = 98.13(3)°, V = 2253(2) Å3, and Z = 2 ([P(C6H5)4]2[Cu2I4]-C), and space group Cc (No. 9), a = 17.133(5), b = 15.941(5), c = 18.762 (6) Å, β = 114.02(1)°, V = 4681(3) Å3, and Z = 4 ([P(C6H5)4]2[Cu2I4]-D), respectively. In these compounds the [CuI2]? anions form dimers di-μ-iodo-diiodocuprate(I), which are either planar ( C ) or folded ( D ).  相似文献   

15.
The structures of six crystalline inclusion compounds between various host molecules and three guest molecules based on the 2‐pyridone skeleton are described. The six compounds are 1,1′‐biphenyl‐2,2′‐dicarboxylic acid–2‐pyridone (1/2), C14H10O4·2C5H5NO, (I–a), 1,1′‐biphenyl‐2,2′‐dicarboxylic acid–4‐methyl‐2‐pyridone (1/2), C14H10O4·2C6H7NO, (I–c), 1,1′‐biphenyl‐2,2′‐dicarboxylic acid–6‐methyl‐2‐pyridone (1/2), C14H10O4·2C6H7NO, (I–d), 1,1,6,6‐tetraphenyl‐2,4‐hexadiyne‐1,6‐diol–1‐methyl‐2‐pyridone (1/2), C30H22O2·2C6H7NO, (II–b), 1,1,6,6‐tetraphenyl‐2,4‐hexadiyne‐1,6‐diol–4‐methy‐2‐pyridone (1/2), C30H22O2·2C6H7NO, (II–c), and 4,4′,4′′‐(ethane‐1,1,1‐triyl)triphenol–6‐methyl‐2‐pyridone–water (1/3/1), C20H18O3·3C6H7NO·H2O, (III–d). In two of the compounds, (I–a) and (I–d), the host molecules lie about crystallographic twofold axes. In two other compounds, (II–b) and (II–c), the host molecules lie across inversion centers. In all cases, the guest molecules are hydrogen bonded to the host molecules through O—H...O=C hydrogen bonds [the range of O...O distances is 2.543 (2)–2.843 (2) Å. The pyridone moieties form dimers through N—H...O=C hydrogen bonds in five of the compounds [the range of N...O distances is 2.763 (2)–2.968 (2) Å]. In four compounds, (I–a), (I–c), (I–d) and (II–c), the molecules are arranged in extended zigzag chains formed via host–guest hydrogen bonding. In five of the compounds, the guest molecules are arranged in parallel pairs on top of each other, related by inversion centers. However, none of these compounds underwent photodimerization in the solid state upon irradiation. In one of the crystalline compounds, (III–d), the guest molecules are arranged in stacks with one disordered molecule. The unsuccessful dimerization is attributed to the large interatomic distances between the potentially reactive atoms [the range of distances is 4.027 (4)–4.865 (4) Å] and to the bad overlap, expressed by the lateral shift between the orbitals of these atoms [the range of the shifts from perfect overlap is 1.727 (4)–3.324 (4) Å]. The bad overlap and large distances between potentially photoreactive atoms are attributed to the hydrogen‐bonding schemes, because the interactions involved in hydrogen bonding are stronger than those in π–π interactions.  相似文献   

16.
K3[DyIII(nta)2(H2O)]·5H2O and (NH4)3[DyIII(nta)2] have been synthesized in aqueous solution and characterized by IR, elemental analysis and single-crystal X-ray diffraction techniques. In K3[DyIII(nta)2(H2O)]·5H2O the DyIII ion is nine coordinated yielding a tricapped trigonal prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 15.373(5) Å, b = 12.896(4) Å, c = 26.202(9) Å; β = 96.122(5)°, V = 5165(3) Å3, Z = 8, D c = 1.965 g·cm?3, μ = 3.458 mm?1, F(000) = 3016, R 1 = 0.0452 and wR 2 = 0.1025 for 4550 observed reflections with I ≥ 2σ(I). In (NH4)3[DyIII(nta)2] the DyIII ion is eight coordinated yielding a usual dicapped trigonal anti-prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 13.736(3) Å, b = 7.9389(16) Å, c = 18.781(4) Å; β = 104.099(3)°, V = 1986.3(7) Å3, Z = 2, D c = 1.983 g·cm?3, μ = 3.834 mm?1, F(000) = 1172, R 1 = 0.0208 and wR 2 = 0.0500 for 2022 observed reflections with I ≥ 2σ(I). The results indicate that the difference in counter ion also influences coordination numbers and structures of rare earth metal complexes with aminopolycarboxylic acid ligands.  相似文献   

17.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

18.
The title complex, [La(btec)1/2(H2btec)1/2 (H2O)]n (H4btec= 1, 2,4,5‐benzenetetracarboxylic acid) (1) was synthesized by the hydrothermal reaction of 1,2,4,5‐benzenetetracarboxylic dianhydride with La(NO3)3·6H2O in H2O, and crystallizes in the triclinic system, space group P‐1 with a = 0.64403(3) nm, b = 0.94500(4) nm, c = 0.96380(5) nm, a = 88.535(2)°, β = 100.314(2)°, γ = 76.6470(10)°, V = 1.60968(10) nm3, Z = 2, and final R = 0.0274, Rw = 0.0735. In 1, each La(m) ion is coordinated by eight oxygen atoms from six carboxylate groups and one coordinated water molecule. Two different coordination modes of H4btec were present in the structure, one of which contains two protonated carboxylate groups to balance the charge.  相似文献   

19.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

20.
Abstract

The title complex, [Mn(C3H4N2)4(H2O)2]·(C8H4O4), was prepared by reaction of terephthalato (diaqua)manganese (II) with imidazole in ethanol/water solution. The complex crystallizes in space group C2/c with cell parameters a = 22.494(5), b = 7.741(2), c = 16.287(3)Å, β = 120.94(3)°, Z = 4. The complex consists of complex Mn(II) cations and uncoordinated terephthalate anions; the latter link cations through an H-bonding network. Thermal analyses and IR spectra are discussed in terms of the formation of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号