首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Structure-Activity Relationships (SAR) have been used for over a decade by the U.S. EPA's Office of Pollution Prevention and Toxics (OPPT) in their new chemicals program. The development and use of SAR resulted from the need to make rapid risk-based decisions on thousands of new chemicals per year while seldom receiving data on chemical properties, potential exposures, or hazards to humans or organisms in the environment. Qualitative SAR and quantitative SAR methods (QSAR) have been used to fill some of these data gaps by estimating the potential properties and hazards of such chemicals. SAR has been used to assess chemical hazards, identify testing needs, and set priorities. Validation of these SAR assessment tools is an ongoing process.  相似文献   

2.
Abstract

The Office of Pollution Prevention and Toxics (OPPT), United States Environmental Protection Agency (USEPA) routinely uses structure-activity relationships (SAR) for the aquatic hazard assessment of new chemicals submitted under Section 5 of the Toxic Substances Control Act (TSCA). With 15 years of experience and the general acceptance of toxicity predictions based on SARs, OPPT has expanded the use and application of the methodology to include existing chemicals used in printing, dry cleaning, and paint stripping. SAR analysis has also been used in the hazard evaluation of the U.S. and EU/OECD high production volume (HPV) chemicals. This paper describes the assumptions, limitations, and methodology for the use of SARs to evaluate large sets of discrete organic chemicals.  相似文献   

3.
Abstract Following a previous collaborative EU/EPA project focussed on QSAR predictions for a selection of new chemicals which had been notified in the EU, a similar exercise was started in 1993 on existing chemicals. In a first phase, the project addresses the High Production Volume (HPV) chemicals which are produced or imported at levels above a 1000t/year in the EU and 454t/year in the US. The relevant EU (Annex 1 of Existing Chemicals Regulation No. 793/93) and US-EPA lists contain 1036 and 2881 organic substances respectively of which HPV 749 chemicals are in common. The joint project aims at an estimation through validated QSAR models of the physical-chemical, ecotoxicity and toxicity endpoints which are included in the regulation and where experimental data will become available in IUCLID (International Unified Chemicals Information Database). Next to EC-JRC (ECB) and US-EPA, various laboratories in the EU are contributing to the project and recently, two institutes in Japan have joined in this project.  相似文献   

4.

From the 8511 chemicals with 1998 production volumes reported to the U.S. Environmental Protection Agency (U.S. EPA), the TSCA Interagency Testing Committee's (ITC's) Degradation Effects Bioconcentration Information Testing Strategies (DEBITS) was used to identify 56 chemicals. The DEBITS Quantitative Structure-Activity Relationships (QSARs) and the U.S. EPA's PBT profiler QSARs were used to predict the persistence and bioconcentration factors of these 56 chemicals. Partial order ranking was used to prioritise the chemicals based on persistence and bioconcentration potential.  相似文献   

5.
6.
7.
Abstract

Computational chemistry provides a means for the calculation or estimation of three-dimensional chemical structure, organization and analysis of chemical data, classification of industrial chemicals by structure and properties, prediction of toxicity, and identification of chemical structure. The development of the EPA National Environmental Supercomputer Center (NESC) in Bay City, Michigan, makes available to scientists in EPA Headquarters, the ability to perform advanced QSAR modeling. This provides the means to develop and apply QSAR models for chemicals acting by a variety of molecular mechanisms. The work makes possible improved programmatic support to the Office of Pollution Prevention and Toxics under the Toxic Substances Control Act and the Pollution Prevention Act.  相似文献   

8.
9.
QSAR/QSPR在POPs归趋与风险评价中的应用*   总被引:4,自引:0,他引:4  
王斌  余刚  黄俊  胡洪营 《化学进展》2007,19(10):1612-1619
持久性有机污染物(POPs)是目前备受国际社会关注的高危害性有机污染物,对它们的环境归趋分析和风险评价需要获得大量可靠的性质数据和毒性数据,而定量结构活性/性质相关(QSAR/QSPR)方法为快速有效地获得这些数据提供了可能性。QSAR/QSPR模型已在预测POPs的生物活性/性质,补充缺失的基础数据及探求POPs的环境过程机制和生态效应机理等方面得到了广泛应用,近年来也在新POPs物质的筛选、归趋模拟以及风险评价等方面有着更进一步的应用或潜在应用前景。本文介绍了QSAR/QSPR在POPs性质和生物活性预测中的基本应用及其在POPs归趋和风险评价中的扩展应用,并对QSAR/QSPR在POPs研究领域的应用前景进行了展望。  相似文献   

10.
Hazard assessments of chemicals have been limited by the availability of test data and the time needed to evaluate the test data. While available data may be inadequate for the majority of industrial chemicals, the body of existing knowledge for most hazards is large enough to permit reliable estimates to be made for untested chemicals without additional animal testing. We provide a summary of the growing use by regulatory agencies of the chemical categories approach, which groups chemicals based on their similar toxicological behaviour and fills in the data gaps in animal test data such as genotoxicity and aquatic toxicity. Although the categories approach may be distinguished from the use of quantitative structure–activity relationships (QSARs) for specific hazard endpoints, robust chemical categories are founded on quantifying the chemical structure with parameters that control chemical behaviour in conventional hazard assessment. The dissemination of the QSAR Application Toolbox by the Organisation for Economic Cooperation and Development (OECD) is an effort to facilitate the use of the categories approach and reduce the need for additional animal testing.  相似文献   

11.
12.
Data on environmental chemicals are urgently needed to comply with the future chemicals policy in the European Union. The availability of data on parameters and chemicals can be evaluated by chemometrical and environmetrical methods. Different mathematical and statistical methods are taken into account in this paper. The emphasis is set on a new, discrete mathematical method called METEOR (method of evaluation by order theory). Application of the Hasse diagram technique (HDT) of the complete data-matrix comprising 12 objects (databases) × 27 attributes (parameters + chemicals) reveals that ECOTOX (ECO), environmental fate database (EFD) and extoxnet (EXT)—also called multi-database databases—are best. Most single databases which are specialised are found in a minimal position in the Hasse diagram; these are biocatalysis/biodegradation database (BID), pesticide database (PES) and UmweltInfo (UMW). The aggregation of environmental parameters and chemicals (equal weight) leads to a slimmer data-matrix on the attribute side. However, no significant differences are found in the best and worst objects. The whole approach indicates a rather bad situation in terms of the availability of data on existing chemicals and hence an alarming signal concerning the new and existing chemicals policies of the EEC.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
14.
15.
Genotoxicity is a key toxicity endpoint for current regulatory requirements regarding new and existing chemicals. However, genotoxicity testing is time-consuming and costly, and involves the use of laboratory animals. This has motivated the development of computational approaches, designed to predict genotoxicity without the need to conduct laboratory tests. Currently, many existing computational methods, like quantitative structure–activity relationship (QSAR) models, provide limited information about the possible mechanisms involved in mutagenicity or predictions based on structural alerts (SAs) do not take statistical models into account. This paper describes an attempt to address this problem by using the TOPological Substructural MOlecular Design (TOPS-MODE) approach to develop and validate improved QSAR models for predicting the mutagenicity of a range of halogenated derivatives. Our most predictive model has an accuracy of 94.12%, exhibits excellent cross-validation and external set statistics. A reasonable interpretation of the model in term of SAs was achieved by means of bond contributions to activity. The results obtained led to the following conclusions: primary halogenated derivatives are more mutagenic than secondary ones; and substitution of chlorine by bromine increases mutagenicity while polyhalogenation decreases activity. The paper demonstrates the potential of the TOPS-MODE approach in developing QSAR models for identifying structural alerts for mutagenicity, combining high predictivity with relevant mechanistic interpretation.  相似文献   

16.
17.
Human Cytochrome P450 (CYP) is a large group of enzymes that possess an essential function in metabolising different exogenous and endogenous compounds. Humans have more than 50 different genes encoding CYP enzymes, among these a gene encoding for the CYP isoenzyme 2D6, a CYP able to metabolise drugs and other chemicals. A training set of 747 chemicals primarily based on in vivo human data for the CYP isoenzyme 2D6 was collected from the literature. QSAR models focusing on substrate/non-substrate activity were constructed by the use of MultiCASE, Leadscope and MDL quantitative structure–activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6 substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed.  相似文献   

18.
Abstract

In aquatic toxicology, QSAR models are generally designed for chemicals presenting the same mode of toxic action. Their proper use provides good simulation results. Problems arise when the mechanism of toxicity of a chemical is not clearly identified. Indeed, in that case, the inappropriate application of a specific QSAR model can lead to a dramatic error in the toxicity estimation. With the advent of powerful computers and easy access to them, and the introduction of soft modeling and artificial intelligence in SAR and QSAR, radically different models, designed from large non-congeneric sets of chemicals have been proposed. Some of these new QSAR models are reviewed and their originality, advantages, and limitations are stressed.  相似文献   

19.
Regulatory agencies are charged with addressing the endocrine disrupting potential of large numbers of chemicals for which there is often little or no data on which to make decisions. Prioritizing the chemicals of greatest concern for further screening for potential hazard to humans and wildlife is an initial step in the process. This paper presents the collection of in vitro data using assays optimized to detect low affinity estrogen receptor (ER) binding chemicals and the use of that data to build effects-based chemical categories following QSAR approaches and principles pioneered by Gilman Veith and colleagues for application to environmental regulatory challenges. Effects-based chemical categories were built using these QSAR principles focused on the types of chemicals in the specific regulatory domain of concern, i.e. non-steroidal industrial chemicals, and based upon a mechanistic hypothesis of how these non-steroidal chemicals of seemingly dissimilar structure to 17ß-estradiol (E2) could interact with the ER via two distinct binding types. Chemicals were also tested to solubility thereby minimizing false negatives and providing confidence in determination of chemicals as inactive. The high-quality data collected in this manner were used to build an ER expert system for chemical prioritization described in a companion article in this journal.  相似文献   

20.
Abstract

On behalf of the Umweltbundesamt the Fraunhofer Gesellschaft has developed a software system (SAR-system) comprising more than 90 estimation models for endpoints relevant in environmental risk assessment. These estimation models are based on the approach of quantitative structure-activity relationships (QSAR). All models were checked for their validity and application range. In the last months the Umweltbundesamt started to test the applicability of some models concerning the endpoints fish acute toxicity, daphnia acute toxicity and ready (i.e., ultimate) biodegradability in the daily routine of the notification procedure. For testing these models the corresponding confidential data given in the dossiers of substances notified 1993 in Germany, were used. We were able to make calculations for 36% of the notified substances. For the remaining 64% of the chemicals it was impossible to accomplish SAR estimations due to several reasons, e.g., ionic structure of the compounds. Different results for the applicability of the mentioned endpoints are obtained. The predictions of the fish and Daphnia toxicity are in sufficient agreement with the experimental results, in case of the fish toxicity we receive 58% agreement, for the Daphnia toxicity 56% The corresponding values which were obtained in the US EPA/E.C. Joint Project on the evaluation of (quantitative) structure activity relationships were 82.3% and 70.9% About 300 different models were used for the calculations of these endpoints within the framework of the EPA/EC project. The SAR-system presented here contains 8 models for estimating the fish toxicity and 6 models for the Daphnia toxicity. For the prediction of the biodegradability the results obtained with the SAR-system are rather poor and have to be improved. Meanwhile the SAR-system is commercially available and can be ordered at the Fraunhofer Institute for Environmental Chemistry and Ecotoxicology, Schmallenberg (Germany).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号