首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of polyvinylpyrrolidone with methyl orange, ethyl orange, propyl orange, and butyl orange has been studied by an equilibrium dialysis method at 5, 15, 25, and 35°C. The first binding constants and the thermodynamic parameters in the course of the binding have been calculated. It was found that the free energy and the enthalpy changes are all negative and the entropy change is largely positive. The longer the alkyl chain of the dyes, the more positive is the enthalpy change (though it is always in the negative direction) and hence the larger is the entropy change. The favorable free energy of the binding of butyl orange observed for the formation of the dye–polymer complex seems to be a result of a favorable entropy change rather than any favorable enthalpy change. Temperature dependences of the thermodynamic functions were apparently observed. That is, ΔF and ΔH become larger in absolute magnitude as the temperature increases. The positive quantity of ΔS tends to decrease with increasing temperture. All these facts obtained can be interpreted satisfactorily by the hydrophobic interaction between hydrocarbon portions of the dyes and nonpolar parts of the macromolecule.  相似文献   

2.
In this work, the interaction of memantine with human serum albumin (HSA) immobilized on porous silica particles was studied using a biochromatographic approach. The determination of the enthalpy change at different pH values suggested that the protonated group in the memantine–HSA complex exhibits a heat protonation with a magnitude around 65 kJ mol?1. This value agrees with the protonation of a guanidinium group, and confirmed that an arginine group may become protonated in the memantine–HSA complex formation. The thermodynamic data showed that memantine–HSA binding, for low temperature (<293 K), is dominated by a positive entropy change. This result suggests that dehydration at the binding interface and charge–charge interactions contribute to the memantine–HSA complex formation. Above 293 K, the thermodynamic data ΔH and ΔS became negative due to van der Waals interactions and hydrogen bonding which are engaged at the complex interface. The temperature dependence of the free energy of binding is weak because of the enthalpy–entropy compensation caused by a large heat capacity change, ΔC p = ? 3.79 kJ mol?1 K?1 at pH = 7. These results were used to determine the potential binding site of this drug on HSA.  相似文献   

3.
In this work, we determined the stability parameters of bovine β-lactoglobulin, variant A, (BLG-A), in relation to their transition curves induced by cetylpyridinium chloride (CPC) as a cationic surfactant. The experiments took place over the temperature range of 298 K to 358 K. For each transition curve at any specific temperature, the conventional method of analysis, which assumes a linear concentration dependence of the pre- and post-transition base lines, gave the most realistic values for ΔGD(H2O). Results show that the minimum value of ΔGD(H2O) occurs at T = 328 K. Using the Gibbs–Helmholtz equation, the values of enthalpy, ΔHD, and entropy, ΔSD, of denaturation have been calculated considering temperature dependence of ΔGD at any specified concentration of CPC. The values of 12.05 kJ · mol−1, 18.54 kJ · mol−1, and 18.32 J · mol−1 · K−1, were obtained for ΔGD(H2O), ΔHD(H2O), and ΔSD(H2O), respectively. The results show that the enthalpy term dominates the entropy term.  相似文献   

4.
The binding of methyl orange, ethyl orange, propyl orange, and butyl orange by poly(vinylpyrrolidone) has been examined by a technique of equilibrium dialysis over a high temperature range (60–90°C). The first binding constants and the thermodynamic parameters in the course of the binding were evaluated. The results obtained at these temperatures were compared to those at lower ones (5–35°C) described previously in order to estimate the contribution of hydrophobic bonds to the binding. It was found that at the 60–90°C range complex formation between the dye and the macromolecule is associated with an exothermic enthalpy change and a positive entropy change. The enthalpy and entropy changes of the binding are of the order of ?4.5 kcal/mole and 6 eu, respectively, for each dye measured. Thus the binding is mainly enthalpy-controlled. Furthermore the effect of the alkyl chain length of the dye on both the ΔH° and ΔS° values is not pronounced. Also temperature dependences of the ΔH° and ΔS° terms were not observed. All these observations in the higher temperature range can be explained as a result of the disruption of water structure in the binding environment and hence a decrease in hydrophobic bond formation between the dye and the polymer.  相似文献   

5.
Variable temperature FT–IR spectroscopy (in the range of 298–380 K) is used to study the thermodynamics of formation of Ca2+???CO carbonyl species upon CO adsorption on the faujasite‐type zeolite Ca–Y, and also the (temperature‐dependent) isomerization equilibrium between carbonyl and isocarbonyl (Ca2+???OC) species. The standard enthalpy and entropy changes involved in formation of the monocarbonyl species resulted to be ΔH0=?50.3 (±0.5) kJ mol?1 and ΔS0=?186 (±5) J mol?1 K?1, respectively. Isomerization of the (C‐bonded) Ca2+???CO carbonyl to yield the (O‐bonded) Ca2+???OC isocarbonyl involves an enthalpy change =+11.4 (±1.0) kJ mol?1. These results are compared with previously reported data for the CO/Sr–Y system; and also, a brief analysis of enthalpy–entropy correlation for CO adsorption on zeolites and metal oxides is given.  相似文献   

6.
用精密自动绝热量热计测定了4-硝基苯甲醇(4-NBA)在78 ~ 396 K温区的摩尔热容。其熔化温度、摩尔熔化焓及摩尔熔化熵分别为:(336.426 ± 0.088) K, (20.97 ± 0.13) kJ×mol-1 和 (57.24 ± 0.36) J×K-1×mol-1.根据热力学函数关系式,从热容值计算出了该物质在80 ~ 400 K温区的热力学函数值 [HT - H298.15 K] 和[ST - S298.15 K]. 用精密氧弹燃烧量热计测定了该物质在T=298.15 K的恒容燃烧能和标准摩尔燃烧焓分别为 (C7H7NO3, s)=- ( 3549.11 ± 1.47 ) kJ×mol-1 和 (C7H7NO3, s)=- ( 3548.49 ± 1.47 ) kJ×mol-1. 利用标准摩尔燃烧焓和其他辅助热力学数据通过盖斯热化学循环, 计算出了该物质标准摩尔生成焓 (C7H7NO3, s)=- (206.49 ± 2.52) kJ×mol-1 .  相似文献   

7.
Interaction between adsorbed hydrogen and the coordinatively unsaturated Mg2+ and Co2+ cationic centres in Mg‐MOF‐74 and Co‐MOF‐74, respectively, was studied by means of variable‐temperature infrared (VTIR) spectroscopy. Perturbation of the H2 molecule by the cationic adsorbing centre renders the H? H stretching mode IR‐active at 4088 and 4043 cm?1 for Mg‐MOF‐74 and Co‐MOF‐74, respectively. Simultaneous measurement of integrated IR absorbance and hydrogen equilibrium pressure for spectra taken over the temperature range of 79–95 K allowed standard adsorption enthalpy and entropy to be determined. Mg‐MOF‐74 showed ΔH0=?9.4 kJ mol?1 and ΔS0=?120 J mol?1 K?1, whereas for Co‐MOF‐74 the corresponding values of ΔH0=?11.2 kJ mol?1 and ΔS0=?130 J mol?1 K?1 were obtained. The observed positive correlation between standard adsorption enthalpy and entropy is discussed in the broader context of corresponding data for hydrogen adsorption on cation‐exchanged zeolites, with a focus on the resulting implications for hydrogen storage and delivering.  相似文献   

8.
Kinetic, equilibrium, and thermodynamic studies were performed for the batch adsorption of methylene blue (MB) on the high lime fly ash as a low cost adsorbent material. The studied operating variables were adsorbent amount, contact time, dye concentration, and temperature. The kinetic data were analyzed using the pseudo-first order and pseudo-second order kinetic models and the adsorption kinetic was followed well by the pseudo-second order kinetic model. The equilibrium data were fitted with the Freundlich, Langmuir, and Dubinin Radushkevich (D–R) isotherms and the equilibrium data were found to be well represented by the Freundlich and D–R isotherms. Based on these two isotherms MB is taken by chemical ion exchange and active sites on the high lime fly ash have different affinities to MB molecules. Various thermodynamic parameters such as enthalpy of adsorption (ΔH°), free energy change (ΔG°), and entropy change (ΔS°) were investigated. The positive value of ΔH° and negative value of ΔG° indicate that the adsorption is endothermic and spontaneous. The positive value of ΔS° shows the increased randomness at the solid–liquid interface during the adsorption. A single-stage batch adsorber was also designed based on the Freundlich isotherm for the removal of MB by the high lime fly ash.  相似文献   

9.
The equilibrium constant for the reaction C6H5NHCOCl = C6H5NCO + HCl in chlorobenzene solution is K = 0.14 mole/kg at 70°. The approximate values of the enthalpy and the entropy of the reaction are ΔH0 = 12 kcal and ΔS0 = 31 cal/deg.  相似文献   

10.
With the help of a commercial heat-flux calorimeter the enthalpy change was measured as a function of the interlamellar spacing for lamellar precipitated Cu-In samples. This is related to the replacement of the two-phase structure (α + δ) by the homogeneous solid solution (α0. From this, the specific interfacial enthalpy of the α-δ interface was determined to be ΔHδ = 1100 ± 550 mJ m?2. A value of ΔHc = 1320 ± 60 J mol?1 results for the chemical part of the total measured transformation enthalpy. A value of ΔSδ = 0.66 mJ m?2 K?1 was estimated for the specific interfacial entropy and using the Gibbs-Helmholtz equation the specific interfacial free energy was calculated as ΔGδ = 700 ± 400 mJ m?2 at 600 K.  相似文献   

11.
Depolarization ratios ρ of the Raman bands due to CH3 stretching at 2907 cm?1 and the Si? O skeletal mode at 491 cm?1 have been measured in polydimethylsiloxane gum as a function of temperature from 100°C to ?45°C. Below 0°C the changes in p have been interpreted in terms of the formation of helical regions in the gum. The enthalpy of helix formation ΔH has been determined as 3200 ± 600 cal/mole. An upper limit on the entropy change, ΔS, of 16 ± 3 e.u./mole and minimum values of helix content at different temperatures have been found. The Raman spectrum of crystalline polydimethylsiloxane is presented.  相似文献   

12.
The extent of binding of methyl orange, ethyl orange, propyl orange, and butyl orange by poly(vinylpyrrolidone) has been measured in aqueous solutions of inorganic electrolytes such as NaCl, LiCl, NaSCN, and NaClO4 by an equilibrium dialysis method. The effect of the salts on the first binding constants and the thermodynamic functions which are accompanied by the dye—polymer association process was investigated relative to the corresponding values in the absence of such salts. It was found that in aqueous solutions of NaCl and LiCl the enthalpy change accompanying the binding is small and the largest contribution to the free energy of binding is from the positive entropy gain. For NaSCN and NaClO4, the values of Δ and Δ were both large and negative and the value of Δ was small and negative. Thus, the favorable free energy for the complex formation was due entirely to the negative enthalpy term. These characteristics of the thermodynamic quantities are discussed in terms of changes in structural properties of water in the vicinity of the binding entities and conformational changes of the polymer to which the dye is bound due to the added foreign electrolytes.  相似文献   

13.
以苏糖酸与碳酸氢钾反应制得苏糖酸钾K(C4H7O5)·H2O,通过红外光谱、热重、化学分析及元素分析等对其进行了表征。用精密自动绝热热量计测量了该化合物在78K-395K温区的摩尔热容。实验结果表明,该化合物存在明显的脱水转变,其脱水浓度、摩尔脱水焓以及摩尔脱水熵分别为:(380.524 ± 0.093) K,(19.655 ± 0.012) kJ/mol 和 (51.618 ± 0.051) J/(K·mol)。将78K-362K和382K-395K两个温区的实验热容值用最小二乘法拟合,得到了两个表示热容随温度变化的多项式方程。以RBC-II型恒容转动弹热量计测定目标化合物的恒容燃烧能为(-1749.71 ± 0.91) kJ/mol,计算得到其标准摩尔生成焓为(-1292.56 ± 1.06) kJ/mol。  相似文献   

14.
Isothermal Titration Calorimetry (ITC) was used to study the thermodynamics of hybridization on DNA-functionalized colloidal gold nanoparticles. When compared to the thermodynamics of hybridization of DNA that is free in solution, the differences in the values of the Gibbs free energy of reaction, ΔrG°, the enthalpy, ΔrH°, and entropy, ΔrS°, were small. The change in ΔrG° between the free and bound states was always positive but with statistical significance outside the 95% confidence interval, implying the free DNA is slightly more stable than when in the bound state. Additionally, ITC was also able to reveal information about the binding stoichiometry of the hybridization reactions on the DNA-functionalized gold nanoparticles, and indicates that there is a significant fraction of the DNA on gold nanoparticle surface that is unavailable for DNA hybridization. Furthermore, the fraction of available DNA is dependent on the spacer group on the DNA that is used to span the gold surface from that to the probe DNA.  相似文献   

15.
In present study adsorption capacity of waste materials of Daucus carota plant (carrot stem powder: CSP and carrot leaves powder: CLP) was explored for the removal of methylene blue (MB) malachite green (MG) dye from water. The morphology and functional groups present were investigated by scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. The operating variables studied were pH, adsorbent dose, ionic strength, initial dye concentration, contact time and temperature. Equilibrium data were analysed using Langmuir and Freundlich isotherm models and monolayer adsorption capacity of adsorbents were calculated. Kinetic data were studied using pseudo-first and pseudo-second order kinetic models and the mechanism of adsorption was described by intraparticle diffusion model.Various thermodynamic parameters such as enthalpy of adsorption ΔH°, free energy change ΔG° and entropy ΔS° were estimated. Negative value of ΔH° and negative values of ΔG° showed that the adsorption process was exothermic and spontaneous. Negative value of entropy ΔS° showed the decreased randomness at the solid–liquid interface during the adsorption of MB and MG onto CSP and CLP.  相似文献   

16.
The proton exchange reaction between the indenyl carbanion and its parent compound indene has been studied by NMR as a function of temperature. The rate of this bimolecular reaction is very low and has been found to be strongly dependent on the polarity of the solvent. In solvents like dimethoxyethane (? = 7·2) and diglyme the reaction becomes manifest in the NMR spectrum only at elevated temperatures (T > 150°C). In hexamethylphosphortriamide (? = 30) the rate is much greater and line broadening may be observable at room temperature. The reaction in this solvent is characterised by a frequency factor f = 7 × 107 1 mol?1 s?1, an activation enthalpy ΔH ≠ = 9·5 kcal mol?1 and an entropy of activation ΔS≠ = ?23 e.u. The low reaction rate and its solvent dependence are briefly discussed.  相似文献   

17.
The specific volume-temperature relationships of polystyrene, poly(2-chlorostyrene), and their polymer blends as well as the volume change of mixing Δvm of the blends were obtained in the liquid state by dilatometry. The equation of state parameter and the molecular parameter of each homopolymer and blends were determined according to the lattice fluid theory of Sanchez and Lacombe. The experimental Δvm obtained agreed quite well with that predicted from theory, and the enthalpy of mixing ΔHm was also predicted using the pair molecular parameter. These two values were negative, indicative of miscibility of polystyrene and poly(2-chlorostyrene) in the liquid state. The absolute values of Δvm and ΔHm were about twice those for polystyrene and poly(phenylene oxide) blend, suggesting a specific interaction between the two polymers.  相似文献   

18.
Equilibrium anionic polymerization of 4,7-dioxaoctanal (DOA) and n-octanal (OA) was carried out in tetrahydrofuran in the temperature range of ?90 to ?68°C, and thermodynamic parameters were evaluated as follows: ΔHss = ?4.0 ± 0.1 kcal/mole, ΔSss = ?18.4 ± 0.5 cal/mole-deg, and Tc,ss = ?56°C for the DOA system; ΔHsc = ?3.4 ± 0.1 kcal/mole, ΔSsc = ?15.7 ± 0.4 cal/mole-deg, and Tc,sc = ?59°C for the OA system. Comparison of these values with those in the cases of β-methoxypropionaldehyde and n-valeraldehyde made it clear that the aliphatic aldehyde having a longer alkyl group polymerizes with smaller changes of enthalpy and entropy and that the polar-substituted aldehydes have higher polymerizability than the corresponding unsubstituted aliphatic aldehydes in the temperature range studied. These effects of substituents are interpreted from the viewpoint of the intermolecular interactions of polar groups in monomers and their polymers.  相似文献   

19.
A search of the published chemical and engineering literature found enthalpy of solution data for an additional 104 and 49 organic compounds dissolved in benzene and acetonitrile, respectively. Standard thermodynamic relationships were used to convert the experimental enthalpy of solution data, ΔHsolv, to enthalpies of solvation, ΔHsolv. Updated Abraham model correlations were derived for describing gas-to-benzene and gas-to-acetonitrile enthalpies of solvation by combining the 104 and 49 additional values to existing benzene and acetonitrile ΔHsolv databases. The updated Abraham model correlations for benzene and acetonitrile described the observed ΔHsolv values to within overall standard deviations of less than 3.4 kJ mol?1.  相似文献   

20.
The chromatographic behaviors of proteins on iminodiacetic acid (IDA) column with and without immobilized metal ion were examined in detail. Comparing the effects of pI, solution pH, and salt concentration on retention of proteins in cation‐exchange chromatography (CEC) and metal chelate affinity chromatography (MCAC), the retention mechanism of proteins was investigated in MCAC. By aid of observing the retention characteristics of proteins on naked IDA and metal chelate columns in high concentration salt‐out salt solution, the hydrophobic interaction in MCAC and the influence of metal ion on it were proved. In terms of the comparison of the thermodynamics of proteins in CEC and MCAC, the thermostability, the conformational change entropy Δ(ΔS0) and enthalpy Δ(ΔH0), compensation temperature β, the driving force and caloritic effect of proteins in MCAC were discussed. The identity of retention mechanism at protein thermal denaturation in CEC and MCAC was demonstrated by using the compensation relationship between ΔH0 and ΔS0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号