首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The smallest fullerene to form in condensing carbon vapor has received considerable interest since the discovery of Buckminsterfullerene, C(60). Smaller fullerenes remain a largely unexplored class of all-carbon molecules that are predicted to exhibit fascinating properties due to the large degree of curvature and resulting highly pyramidalized carbon atoms in their structures. However, that curvature also renders the smallest fullerenes highly reactive, making them difficult to detect experimentally. Gas-phase attempts to investigate the smallest fullerene by stabilization through cage encapsulation of a metal have been hindered by the complexity of mass spectra that result from vaporization experiments which include non-fullerene clusters, empty cages, and metallofullerenes. We use high-resolution FT-ICR mass spectrometry to overcome that problem and investigate formation of the smallest fullerene by use of a pulsed laser vaporization cluster source. Here, we report that the C(28) fullerene stabilized by encapsulation with an appropriate metal forms directly from carbon vapor as the smallest fullerene under our conditions. Its stabilization is investigated, and we show that M@C(28) is formed by a bottom-up growth mechanism and is a precursor to larger metallofullerenes. In fact, it appears that the encapsulating metal species may catalyze or nucleate endohedral fullerene formation.  相似文献   

2.
Experimental and theoretical studies focusing on the formation of carbon clusters are described. In the experiment on discharge in liquid chloroform, a series of perchlorinated fragments of C60 was synthesized and a scarce amount of C60 was detected. In the laser vaporization experiments, it was found that the production of C 60 + and other fullerene ions could be promoted by doping chlorine-containing compounds into carbon targets. Chlorine atoms were found to play key roles of not only tying up the dangling bonds of the polycyclic carbon clusters, but also catalyzing the formation of fullerenes. The results showed that C60 and other fullerenes are formed from growth of small carbon species and supported the Pentagon Road scheme of the fullerene formation mechanism. On the other hand, ab initio calculations were carried out on formation reactions of C60 from its various perchlorinated fragments, C60–2mCl10. The monotonically decreasing calculated energies of reactions with growing size of the fragments confirm that the formation reaction is energetically favorable.  相似文献   

3.
The salt (DMI(+))(2)·(C(60)(?-))·{Cd(Et(2)NCS(2))(2)I(-)} (1) containing fullerene radical anions, the anions of cadmium diethyldithiocarbamate iodide, and N,N'-dimethylimidazolium cations was obtained. Fullerenes are monomeric in 1 at 250 K and form three-dimensional packing in which each fullerene has nearly tetrahedral surroundings from neighboring fullerenes. Fullerenes with a shorter interfullerene center-to-center distance of 10.031(2) ? form spiral chains arranged along the lattice c axis. The convolution consists of four fullerene molecules. Dimerization realized in 1 within the spiral chains below 135 K manifests a strong dependence on the cooling rate. The "frozen" monomeric phase was obtained upon instant quenching of 1. This phase is stable below 95 K for a long time but slowly converted to the dimeric phase at T > 95 K. It exhibits a weak antiferromagnetic interaction of spins below 95 K (the Weiss temperature is -4 K), which results in the splitting of the electron paramagnetic resonance (EPR) signal into two components below 10 K. A disordered phase containing both C(60)(?-) monomers and singly bonded (C(60)(-))(2) dimers with approximately 0.5/0.5 occupancies is formed at an intermediate cooling rate (for 20 min). The position of each fullerene in this phase is split into three positions slightly shifted relative to each other. The central position corresponds to nonbonded fullerenes with interfullerene center-to-center distances of 9.94-10.00 ?. Two other positions are coincided to dimeric fullerenes formed with the right and left fullerene neighbors within the spiral chain. This intermediate phase is paramagnetic with nearly zero Weiss temperature due to isolation of C(60)(?-) by diamagnetic species and exhibits a strongly asymmetric EPR signal below 20 K. A diamagnetic phase containing ordered singly bonded (C(60)(-))(2) dimers can be obtained only upon slow cooling of the crystal for 6 h.  相似文献   

4.
Recently Irle, Morokuma, and collaborators have carried out a series of quantum chemical molecular dynamics simulations of carbon clustering. The results of these computer experiments are that carbon clusters of size greater than 60 atoms are rapidly formed, anneal to giant fullerenes, and then these fullerenes shrink. The simulation could not be carried to long enough times for the shrinking to reach C60, but they propose reasonably that this shrinking process ultimately forms buckminsterfullerene. However, these simulations do not reveal the force driving the shrinking process. Here, this driving force for shrinking is found to be reactions in which C2 is swapped between fullerenes. The key element is that for typical fullerenes the equilibrium constants for such C2 interchanges are near unity, resulting in expansion of the breadth of the fullerene distribution in an annealing process. When fullerenes of 60 or 70 atoms are populated by shrinking, they fall into the local energy minimum of buckminsterfullerene or D5h C70. This simple mechanism accounts for the high yields (>20%) of buckminsterfullerene that can be achieved in pure carbon systems.  相似文献   

5.
徐守兵 《化学教育》2021,42(5):89-96
以发现C60球笼结构的史实阐述结构模型的制作对探索物质结构奥秘的重要性。以科学家对富勒烯形成机制的探索佐证多角度构建结构模型的合理性,举例介绍搭建C60球棍模型3种方法的操作步骤。探讨一组有结构关联性C60+10n碳笼分子结构模型构建的思维方法,举例介绍搭建代表分子C70,C80球棍模型的操作步骤。探讨一组有高度对称性的富勒烯结构模型构建的思维方法,举例介绍搭建大直径、高对称富勒烯C720球棍模型的操作步骤。结合《普通高中化学课程标准(2017年版)》和教学实践探讨结构模型构建在化学教学中的作用,为富勒烯结构模型的自主构建教学提供范例。  相似文献   

6.
The dynamic self-assembly mechanism of fullerene molecules is an irreversible process emerging naturally under the nonequilibrium conditions of hot carbon vapor and is a consequence of the interplay between the dynamics and chemistry of polyyne chains, pi-conjugation and corresponding stabilization, and the dynamics of hot giant fullerene cages. In this feature article we briefly present an overview of experimental findings and past attempts to explain fullerene formation and show in detail how our recent quantum chemical molecular dynamics simulations of the dynamics of carbon vapor far from thermodynamic equilibrium have assisted in the discovery of the combined size-up/size-down "shrinking hot giant" road that leads to the formation of buckminsterfullerene C60, C70, and larger fullerenes. This formation mechanism is the first reported case of order created out of chaos where a distinct covalent bond network of an entire molecule is spontaneously self-assembled to a highly symmetric structure and fully explains the fullerene formation process consistently with all available experimental observations a priori. Experimental evidence suggests that it applies universally to all fullerene formation processes irrespective of the carbon source.  相似文献   

7.
We report a combined theoretical and experimental study on the single-molecule interaction of fullerenes with phospholipid membranes. We studied pristine C(60) (1) and two N-substituted fulleropyrrolidines (2 and 3), one of which (3) bore a paramagnetic nitroxide group. Theoretical predictions of fullerene distribution and permeability across lipid bilayers were combined with electron paramagnetic resonance (EPR) experiments in aligned DMPC/DHPC bicelles containing the paramagnetic fulleropyrrolidine 3 or either one of the diamagnetic fullerenes together with spin-labeled lipids. We found that, at low concentrations, fullerenes are present in the bilayer as single molecules. Their preferred location in the membrane is only slightly influenced by the derivatization: all derivatives were confined just below the hydrophilic/hydrophobic interface, because of the key role played by dispersion interactions between the highly polarizable fullerene cage and the hydrocarbon chains, which are especially tight within this region. However, the deviation from spherical shape is sufficient to induce a preferential orientation of 2 and 3 in the membrane. We predict that monomeric fullerenes spontaneously penetrate the bilayer, in agreement with the results of molecular dynamics simulations, but we point out the limits of the currently used permeability model when applied to hydrophobic solutes.  相似文献   

8.
This review is focused on charge-transfer reactions at carbon nanotubes and fullerenes. The spectroelectrochemistry of fullerenes deals with the spin states of fullerenes, the role of mono-anions and the reactivity of higher charged states in C60. The optical (Vis-NIR) spectroelectrochemistry of single-walled carbon nanotubes (SWNTs) follows changes in the allowed optical transitions among the Van Hove singularities. The Raman spectroelectrochemistry of SWNT benefits from strong resonance enhancement of the Raman scattering. Here, both semiconducting and metallic SWNTs are analyzed using the radial breathing mode (RBM) and G-modes as well as the second order (D, G') and intermediate frequency modes. Raman spectroelectrochemistry of SWNT allows the addressing of index-identified tubes and even single isolated nanotubes. Optical and Raman spectroelectrochemistry of fullerene peapods, C60@SWNT and C70@SWNT indicates effective shielding of the intratubular fullerene (peas). The most striking effect in the spectroelectrochemistry of peapods is the so-called "anodic Raman enhancement" of intratubular C60. Double-walled carbon nanotubes (DWNTs) give a specific spectroscopic response in Vis-NIR spectroelectrochemistry for the inner and the outer tube. They are better distinguishable by Raman spectroelectrochemistry which allows a precise tracing of the specific doping response of outer/inner tubes.  相似文献   

9.
Higher fullerenes (>/=C76) were selectively extracted from a fullerene mixture obtained from a combustion-based industrial production source by cyclic dimers of beta-unsubstituted porphyrin zinc complexes 2C5-2C7 with C5-C7 alkylene spacers as host molecules. Results of single extraction of the fullerene mixture with 2C5-2C7 together with a beta-substituted analogue of 2C6 (1C6) and spectroscopic titration of 2C6 and 1C6 with C60, C70, and C96 indicated that the host selectivity toward higher fullerenes is much dependent on the structure of the porphyrin units and the size of the host cavity. Sequential three-stage extraction of the fullerene mixture with the best-behaved 2C6 resulted in considerable enrichment in very rare fullerenes C102-C110 (<0.1 abs %) up to 82 abs % (C76-C114, 99 abs %) (356 nm) of total fullerenes.  相似文献   

10.
柳东芳  郭志新  李媛  朱道本 《化学通报》2002,65(11):727-733
本文从实验以及理论研究两方面介绍了C60与叠氧化合物的单加成反应。依照叠氮化合物的不同,C60与叠氮合物的单加成反应可分为烷基叠氮化物与C60的反应,酰基叠氧化物与C60的反应以及苯基叠氮化与C60的反应三类,而反应产物则为C60亚氨基[6,6]闭环衍生物和C60亚氨基[5,6]开环衍生物两类,不同类型的反应具有不同的反应机理,某些C60亚氨基[5,6]开环衍生物可以转化为C60亚氨基[6,6]闭环衍生物。本文还介绍了碳纳米管与叠氮化合物的加成反应。  相似文献   

11.
Energetic-radiation-induced dimerization reaction of fullerenes was found to be a simple and highly selective method for synthesis of C2m-X-C2n (m = n or m not equal n) type molecules without formation of other products. Utilizing the new method, C70-C-C70, C60-C-C70, C60-C-C60, and C70-O-C70 were prepared and characterized. The method is capable of synthesizing new C2m-X-C2n molecules by introducing X (different atoms) into the reaction system. Energetic radiation created reactive sites for covalently bonded bridges between fullerene molecules originally only weakly bound by van der Waals force. This observation may open a new subject and practicable approach for polymer sciences of fullerenes.  相似文献   

12.
Using molecular-dynamics simulations we investigate thermal relaxation of C60 and C84 molecules suspended in octane liquid. Pristine fullerenes exhibit relatively slow relaxation due to weak thermal coupling with the liquid. A comparison of the interfacial transport characteristics obtained from relaxation simulations with those obtained from equilibrium simulations and fluctuation-dissipation theorem analysis demonstrates that the relaxation process involves two main steps: (i) energy flow from high- to low-frequency modes within the fullerene, and (ii) energy flow from low-frequency fullerene modes to the liquid. Functionalization of fullerenes with alkene chains leads to significant reduction of the thermal relaxation time. The relaxation time of functionalized fullerenes becomes independent from the functionalizing chain length beyond approximately 10 carbon segments; this can be understood in terms of thermal conductivity along the chain and heat transfer between the chain and the solvent.  相似文献   

13.
We study the spectral properties of two kinds of derivatives of the carbon fullerene C(60), small fullerenes and Si-heterofullerenes, by ab initio calculations. The principal method of study is the time-dependent density-functional theory in its full time-propagation form. C(20), C(28), C(32), C(36), and C(50), the most stable small fullerenes in the range of C(20)-C(50), are found to have characteristic features in their optical absorption spectra, originating from the geometry of the molecules in question. The comparison of measured and calculated absorption spectra is found to be a useful tool in differentiating between different, almost isoenergetic ground state structure candidates of small fullerenes. Substitutionally doped fullerenes are of interest due to their enhanced chemical reactivity. It is suggested that the doping degree can be obtained by studying the absorption spectra. For example, it is observed that the spectra gradually change when doping C(60) up to C(48)Si(12) so that absorption in the visible and near infrared regions increases.  相似文献   

14.
Tada T  Ishida Y  Saigo K 《Organic letters》2007,9(11):2083-2086
A series of novel transformations of [60]fullerene derivatives were found, starting from methano[60]fullerenes with an electron-donating group on the methano-bridge carbon. Aminomethano[60]fullerenes, in situ generated by the treatment of their trifluoromethanesulfonic acid salts with a base, were readily converted into 1-acyl-1,2-dihydro[60]fullerenes via the ring opening of the cyclopropane moiety. The aldehyde/ketones thus obtained were easily hydrolyzed to give 1,2-dihydro[60]fullerene in the presence of hydroxide anions.  相似文献   

15.
A novel synthetic method that can encapsulate fullerene molecules (pure C60, pure C70, or their mixture) over a wide range of concentrations ranging from micromolar to millimolar in hybrid glass by a sol-gel method without any time-consuming, complicated, and unwanted extra steps (e.g., addition of a surfactant or derivatization of the fullerenes) has been successfully developed. The molecular state and distribution of encapsulated fullerene molecules in these sol-gel samples were unequivocally characterized using newly developed multispectral imaging techniques. The high sensitivity (single-pixel resolution) and ability of these instruments to record multispectral images at different spatial resolutions (approximately 10 microm with the macroscopic instrument and approximately 0.8 microm with the microscopic instrument) make them uniquely suited for this task. Specifically, the imaging instruments can be used to simultaneously measure multispectral images of sol-gel-encapsulated C60 and C70 molecules at many different positions within a sol-gel sample in an area either as large as 3 mm x 4 mm (with the macroscopic imaging instrument) or as small as 0.8 microm x 0.8 microm (with the microscopic instrument). The absorption spectrum of the fullerene molecule at each position can then be calculated either by averaging the intensity of a 15 x 15 square of pixels (which corresponds to an area of 3 mm x 4 mm) or from the intensity of a single pixel (i.e., an area of about 0.8 microm x 0.8 microm), respectively. The molecular state and distribution of fullerene molecules within sol-gel samples can then be determined from the calculated spectra. It was found that spectra of encapsulated C60 and C70 measured at five different positions within a sol-gel sample were similar not only to one another but also to spectra measured at six different times during the sol-gel reaction process (from t = 0 to 10 days). Furthermore, these spectra are similar to the corresponding spectra of monomeric C60 or C70 molecules in solution. Similarly, spectra of sol-gel samples containing a mixture of C60 and C70 were found to be the same at five different positions, as well as similar to spectra calculated from an average of the spectra of C60 and C70 either encapsulated in a sol-gel or in solution. It is evident from these results that C60 and C70 molecules do not undergo aggregation upon encapsulation into a sol-gel but rather remain in their monomeric state. Furthermore, entrapped C60 and C70 molecules in their monomeric state were distributed homogeneously throughout the entire sol-gel samples. Such a conclusion can be readily, quickly, and easily obtained, not with traditional spectroscopic techniques based on the use of a single-channel detector (absorption, fluorescence, infrared, Raman) but rather with the newly developed multispectral imaging technique. More importantly, the novel synthetic method reported here makes it possible, for the first time, to homogenously entrap monomeric fullerene molecules (C60, C70, or their mixture) in a sol-gel at various concentrations ranging from as low as 2.2 mM C60 (or 190 microM C70) to as high as 4.2 mM C60 (or 360 microM C70).  相似文献   

16.
A theoretical investigation on the structure, stability, and thermal behaviors of the smallest polymeric units, the dimers, formed from substitutionally Si-doped fullerenes is presented. A density functional based nonorthogonal tight-binding model has been employed for describing the interatomic interactions. The study focuses on those polymeric structures which involve Si-Si or Si-C interfullerene bonds. The binding energy of the dimers increases with their Si content from about 0.25 eV in C(60)-C(60) to about 4.5 eV in C(58)Si(2)-C(58)Si(2). Moreover, the C(59)SiC(59) dimer, linked through the sharing of the Si atom between the two fullerenes, has been also considered. Upon heating, the dimers eventually fragment into their constituent fullerene units. The fragmentation temperature correlates with the strength of the interfullerene bonds. C(58)Si(2)-C(58)Si(2) exhibits a higher thermal stability (fragmentation temperature of approximately 500 K) than the pure carbon C(60)-C(60) dimer (with a fragmentation temperature of approximately 325 K). Given the higher structural and thermal stabilities of the Si-doped fullerene dimers, the authors propose the use of substitutionally Si-doped fullerenes as the basic units for constructing new fullerene-based polymers.  相似文献   

17.
Anisotropy of intermolecular and molecule-substrate interactions holds the key to controlling the arrangement of fullerenes into 2D self-assembled monolayers (SAMs). The chemical reactivity of fullerenes allows functionalization of the carbon cages with sulfur-containing groups, thiols and thioethers, which facilitates the reliable adsorption of these molecules on gold substrates. A series of structurally related molecules, eight of which are new fullerene compounds, allows systematic investigation of the structural and functional parameters defining the geometry of fullerene SAMs. Scanning tunnelling microscopy (STM) measurements reveal that the chemical nature of the anchoring group appears to be crucial for the long-range order in fullerenes: the assembly of thiol-functionalized fullerenes is governed by strong molecule-surface interactions, which prohibit formation of ordered molecular arrays, while thioether-functionalized fullerenes, which have a weaker interaction with the surface than the thiols, form a variety of ordered 2D molecular arrays owing to noncovalent intermolecular interactions. A linear row of fullerene molecules is a recurring structural feature of the ordered SAMs, but the relative alignment and the spacing between the fullerene rows is strongly dependent on the size and shape of the spacer group linking the fullerene cage and the anchoring group. Careful control of the chemical functionality on the carbon cages enables positioning of fullerenes into at least four different packing arrangements, none of which have been observed before. Our new strategy for the controlled arrangement of fullerenes on surfaces at the molecular level will advance the development of practical applications for these nanomaterials.  相似文献   

18.
Using density functional theory method we show that hollow silicon fullerene cages, SiN (20相似文献   

19.
Studies have shown that C(60) fullerene can form stable colloidal suspensions in water that result in C(60) aqueous concentrations many orders of magnitude above C(60)'s aqueous solubility; however, quantitative methods for the analysis of C(60) and other fullerenes in environmental media are scarce. Using a 80/20v/v toluene-acetonitrile mobile phase and a 4.6mmx150mm Cosmosil 5mu PYE column, C(60), C(70), and PCBM ([6,6]-phenyl C(61)-butyric acid methyl ester) were fully resolved. Selectivity factors (alpha) for C(60) relative to PCBM and C(70) relative to C(60) were 3.18 and 2.19, respectively. The best analytical wavelengths for the fullerenes were determined to be 330, 333, and 333nm with log molar absorption coefficients (logvarepsilon) of 4.63, 4.82, and 4.60 for PCBM, C(60), C(70), respectively. Extraction and quantitation of all three fullerenes in aqueous suspensions over a range of pH (4-10) and ionic strengths were very good. Whole-method quantification limits for ground and surface suspensions were 2.87, 2.48, and 6.54mug/L for PCBM, C(60), and C(70), respectively.  相似文献   

20.
Meier MS  Kiegiel J 《Organic letters》2001,3(11):1717-1719
The simple fullerene diols C(60)(OH)(2) and C(70)(OH)(2) were prepared by addition of RuO(4) followed by acid hydrolysis. The 1,2-C(60)(OH)(2) isomer was formed from C(60), and two isomers (1,2 and 5,6) of C(70)(OH)(2) were formed in the RuO(4) hydroxylation of C(70). These compounds are much more soluble in THF and dioxane than the parent fullerenes. More highly hydroxylated materials are formed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号