首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
于永亮  高飞  陈明丽  王建华 《化学学报》2013,71(8):1121-1124
以介质阻挡放电(DBD)为低温原子化器并引入长光程吸收检测池,建立了微型化原子吸收光谱系统.在顺序注射系统中产生的汞及甲基汞蒸气依次经过气液分离器、玻璃棉除水微柱和原子化器然后进入长光程吸收检测池,进行原子吸收光谱测定.当DBD原子化器关闭时,通过冷原子吸收测得无机汞的吸光度,而当DBD原子化器开启时,得到无机汞和甲基汞的总吸光度.在本体系中两种汞形态的吸光度具有很好的加合性,从而有利于实现无机汞和甲基汞的分别测定.当进样体积为1.0 mL时,无机汞与甲基汞的检出限分别为0.3和0.4μg L-1,相对标准偏差均小于4%.用本微型化原子吸收光谱系统测定了实际样品中的汞及其形态,证明了该系统的可靠性.  相似文献   

2.
甲基汞与无机汞在体外与免疫球蛋白IgG反应,经X小角散射检测后发现,汞可以影响IgG的分子构象。检测后数据经过S.exe软件包处理计算,得出反应分子构象的Kratky plot图、distance distribution function和蛋白质形状数据。综合各个参数,发现不同的反应时间和不同的汞形态均可以引起IgG发生折叠和去折叠现象,这些结果表明汞可以影响免疫球蛋白的结构。  相似文献   

3.
1 引言 甲基汞在水生生物体中有很强的富集效应,并可通过食物链富集进入人体.由于环境和生物样品基体的复杂性及汞化合物的毒性,使得样品前处理在整个汞形态分析过程中占有重要地位.碱消解是一种比较有效的生物样品提取方法,甲基汞的提取率高,但其提取时间长,操作步骤繁琐.本实验改进了碱消解的提取方法,仍以25% KOH/甲醇溶液为提取液,样品经水浴浸提2 h后,直接上机测定,缩短了处理时间,简化了提取步骤.建立了水浴浸提-高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)联用技术测定水产品中甲基汞的方法.  相似文献   

4.
气相色谱-原子吸收联用技术测定人体体液中烷基汞   总被引:3,自引:0,他引:3  
庞秀言  梁淑轩 《色谱》1997,15(2):130-132
 建立了一种用于生物样品中分子形态分析的气相色谱与原子吸收联用系统。系统的转移线为聚四氟乙烯管,组分在色谱住内分离后,经转移线运送到原子吸收检测系统。实验证明:系统具有灵敏度高、选择性好的优点,例汞绝对检测限为10-2ng,并首次用于人体血液和尿液中烷基隶的两种形态即氯化甲基汞和二甲基汞的定性和定量分析。  相似文献   

5.
张秀尧  蔡欣欣  张晓艺 《分析化学》2014,(10):1524-1529
建立了测定水产品中甲基汞和乙基汞的气相色谱质谱联用分析方法。采用6.0 mol/L HCl超声辅助提取,在NaCl存在下,提取液中甲基汞和乙基汞可被甲苯萃取,再用半胱氨酸反萃取,加入CuSO4释放出的甲基汞和乙基汞与四苯硼钠反应,生成甲基苯基汞和乙基苯基汞,经DB-5MS毛细柱分离,选择离子监测方式(SIM)质谱检测,以d3-甲基汞作为内标的稳定同位素稀释法定量。甲基汞和乙基汞标准曲线的线性范围均为1~500μg/L,国家标准参考物质(GBW 10029)6次测定的甲基汞(以汞计)平均值为0.828 mg/kg,相对标准偏差为3.2%,与证书参考值(0.84±0.03)mg/kg(以汞计)一致。鱼、虾和贝类等不同种类水产品中甲基汞和乙基汞的平均加标回收率分别为94%~101%和81%~104%,相对标准偏差在1.9%~4.7%和3.1%~8.2%范围内(n=6),样品的检出限为0.1~0.3μg/kg(S/N=3)。方法灵敏,准确,可用于水产品中甲基汞和乙基汞的测定。  相似文献   

6.
高效液相色谱与原子荧光光谱联用分析海产品中的甲基汞   总被引:3,自引:1,他引:2  
建立了高效液相色谱-紫外消解-氢化物发生-原子荧光光谱联用测定海产品中甲基汞的方法, 比较了不同溶剂对海产品中甲基汞提取效率的影响. 实验采用质量分数25% (m/V) KOH甲醇溶液, 室温振荡10 h消解样品, CH2Cl2萃取, 再以0.01 mol/L Na2S2O3水溶液反萃取, 并采用HPLC-UV-HG-AFS测定鱼和扇贝萃取液中的甲基汞的含量. 在优化分离和前处理条件下, 平行进样5次10 ng/mL的汞混合标准溶液, 甲基汞、无机汞和乙基汞的色谱峰面积的相对标准偏差(RSDs)分别为4.4%、 3.9%和4.3%, 甲基汞、无机汞和乙基汞的检出限分别为0.069、 0.15和0.046 ng/mL;鱼和扇贝的甲基汞的加标回收率为96±5%和95±5%.  相似文献   

7.
高效液相色谱与原子荧光光谱联用分析汞化合物形态的研究   总被引:17,自引:2,他引:15  
建立了高效液相色谱与原子荧光光谱联用测定汞化合物形态的分析方法。实验对淋洗液组分浓度、氧化剂和还原剂浓度、载气流速及紫外消解管长度等操作条件进行了优化,获得了令人满意的分析结果。在优化的分离检测条件下,20μg/L的汞化合物标准溶液平行7次进样分析,甲基汞、无机汞和乙基汞的色谱峰高的相对标准偏差(RSD)分别为2.0%、2.9%和2.4%;3种汞化合物的线性范围为10~1000μg/L,25μL进样检出限分别为3、2和4μg/L。用建立的方法测定了脉红螺样品中甲基汞的含量,甲基汞和乙基汞的加标回收率分别为90%和92%。  相似文献   

8.
对气相色谱(GC)与电感耦合等离子体质谱(ICP-MS)联用的商品化接口进行了改进,并将GC-ICP-MS联用技术应用于水产品中汞的形态分析。在优化条件下,甲基汞(MeHg(Ⅰ))和乙基汞(EtHg(Ⅰ))的检出限(S/N=3)分别为0.5pg和1.0pg,定量限(S/N=8)分别为1.5pg和2.8pg,标准曲线的线性范围为1~1000pg。对三文鱼肉、金枪鱼肉和角鲨鱼肉3种标准物质和市售14种鱼贝类水产品,采用非衍生的样品预处理,进行汞的形态分析。结果表明,采集样品中均检出有甲基汞,未检测出乙基汞,甲基汞的含量在3.7~236.6ng/g(以Hg计)范围,甲基汞的加标回收率为91%~102%。  相似文献   

9.
高分离快速液相色谱作为分离手段,电感耦合等离子体质谱作为高灵敏度的检测器与之联用,建立了二价汞、甲基汞、乙基汞、苯基汞等4种汞形态的快速分离分析方法.采用亚2μm色谱柱、醋酸铵/L-半胱氨酸缓冲盐及甲醇体系组成流动相按一定比例进行梯度洗脱,使之与样品中的各种汞形态形成非极性化合物而后在色谱柱上进行分离.二价汞、甲基汞与乙基汞在低有机相条件下即被迅速洗脱,而苯基汞则保留能力较强,洗脱时间稍长,在高有机相条件下出峰较快.  相似文献   

10.
用巯基棉富集,四乙基硼化钠衍生,气相色谱–质谱联用法测定水体中的甲基汞和乙基汞,线性范围为10~150 ng/L,线性范围内的重复性相对标准偏差(n=10)甲基汞为4.63%,乙基汞为5.52%,方法回收率甲基汞为99.00%~103.01%,乙基汞为85.49%~97.59%。通过四乙基硼化钠衍生把甲基汞和乙基汞化转化成全烷基化合物,降低了甲基汞和乙基汞的活性,减少甲基汞和乙基汞在色谱柱上的吸附和峰拖尾的现象。方法适合实验室大批量样品的测定。  相似文献   

11.
An intercomparison exercise was organized between seven laboratories using various isolation procedures (extraction, distillation, ion-exchange and alkaline digestion) and detection systems (CV AAS, cold vapour atomic absorption spectroscopy; CV AFS, cold vapour atomic fluorescence spectroscopy; GC, ECD, gas chromatography electron capture detector and HPLC with CV AFS detection) for determination of methylmercury compounds in sediment sample. All certification criteria were fulfilled and therefore the value for total concentration of methylmercury compounds was certified to be 5.46 ng g?1, with a 95% confidence interval from 4.07–5.84 ng g?1. The acceptable range, calculated as two times the confidence interval of the mean is therefore from 4.68–6.23 ng g?1. This is the first sediment reference material ever to be certified for concentration of methylmercury compounds. Comparison of the data obtained by various methodologies has shown that the most critical step is the isolation of methylmercury compounds from binding sites. Acid leaching only cannot release methylmercury compounds quantitatively. Total release of methylmercury compounds could only be achieved by alkaline digestion or distillation. This simple intercomparison exercise has shown that since large numbers of laboratories world-wide are performing methylmercury compound analyses using various improved and specific separation methods and sensitive detection systems, certification of methylmercury compounds in different biological and environmental samples should not be a problem in the future.  相似文献   

12.
Methylmercury was preconcentrated from water on to a sulph-hydryl cotton fibre adsorbent, using the column technique or the batch-column two-stage technique. A small volume of 2 M HCl was used to elute methylmercury and to separate it from inorganic mercury; 0.4–0.6 ml of benzene was used to extract methylmercury from the eluate. Analysis was performed by capillary gas chromatography with electron-capture detection. The detection limit for methylmercury was <0.05 ng l?1 in a 4-l water sample. Four surface waters were analysed to test the agreement of methylmercury concentration between the two preconcentration methods, and to test the interference of humic substances on the filtered and unfiltered surface water. The methylmercury concentrations found in different surface water samples ranged from 0.08 to 0.48 ng l?1.  相似文献   

13.
This paper describes the development of two independent analytical methods for the extraction and quantification of methylmercury from marine biota. The procedures involve microwave extraction, followed by derivatization and either headspace solid-phase microextraction (SPME) with a polydimethylsiloxane (PDMS)-coated silica fiber or back-extraction into iso-octane. The identification and quantification of the extracted compounds is carried out by capillary gas chromatography/mass spectrometric (GC/MS) and inductively coupled plasma mass spectrometric (GC/ICP-MS) detection. Both methods were validated for the determination of methylmercury (MeHg) concentrations in a variety of biological standard reference materials (SRMs) including fresh-frozen tissue homogenates of SRM 1946 Lake Superior fish tissue and SRM 1974a organics in mussel tissue (Mytilus edulis) and then applied to the certification effort of SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis). While past certifications of methylmercury in tissue SRMs have been based on two independent methods from the National Institute of Standards and Technology (NIST) and participating laboratories, the methods described within provide improved protocols and will allow future certification efforts to be based on at least two independent analytical methods within NIST.  相似文献   

14.
A procedure for separation and quantitation of methylmercury by capillary electrophoresis using sample stacking as the injection technique is presented. The CE conditions have been optimized in order to separate the methylmercury from the excess cysteine peak and to concentrate large volumes of sample obtaining a low detection limit. Under the proposed operational conditions, the detection limit (S/N = 3) was 12 ng g and the limit of quantitation (S/N = 10) was 20 ng g−1 with a linear range of 20–100 ng g−1 (as methylmercury in samples). The method was tested using different reference materials with a certified methylmercury content.  相似文献   

15.
An accurate, precise, sensitive and automated non-chromatographic method for methylmercury speciation based on a selective continuous liquid-liquid extraction of methylmercury, into xylene, as bromide and cold mercury vapour generation directly from the organic phase and final ICP-AES mercury detection is proposed. Both separation steps, liquid-liquid and gas-liquid are accomplished in a continuous mode and on line with ICP-AES as detector. The detection limit attained for methylmercury was 4ng·ml–1 (as mercury). The precision of the determination at a concentration level around 20 times the detection limit was +-5%. The proposed methodology has been applied successfully to the speciation of methylmercury and inorganic mercury in spiked sea water and spiked urine samples.  相似文献   

16.
Wei J  McLeod CW 《Talanta》1992,39(11):1537-1542
A novel method for the rapid sequential determination of inorganic mercury and methylmercury in natural waters at the ng/l. level has been developed. Trace enrichment and separation of mercury species are achieved using a microcolumn of sulphydryl cotton which has a relatively high affinity for methylmercury. The limit of detection for methylmercury based on processing of a 0.5-ml sample volume was 6 ng/l. Application to river waters is demonstrated.  相似文献   

17.
An improvement in the extraction step in the method of Decadt et al. for determining methylmercury in biological tissues is described. The methylmercury is released from the tissue by use of sulphuric acid as the cleaving agent and immediately converted to the iodide form by iodoacetic acid. These reaction steps take place in a closed headspace vial. The methylmercury iodide is then headspace-injected into a gas-chromatograph and detected with a microwave-induced plasma detector. Quantitation is accomplished by standard addition. Analysis of one sample takes less than 15 min. The detection limit of the method is 20 ng methylmercury per gram biological tissue when 50 mg of tissue are taken.  相似文献   

18.
Inorganic mercury and methylmercury are determined in natural waters by injecting the filtered samples onto a low cost commercial flow injection system in which an anion exchange microcolumn is inserted after the injection loop (FIA-IE). If hydrochloric acid is used as the carrier solution, the HgCl4(2-) species (inorganic mercury) will be retained by the anion exchanger while the CH3HgCI species (methylmercury) will flow through the resin with negligible retention. Four anion exchangers and seven elution agents were checked, in a batch mode, to search for the best conditions for optimal separation and elution of both species. Dowex M-41 and L-cysteine were finally selected. Mercury detection was performed by cold vapour-electrothermal atomic adsorption spectrometry (HG-ETAAS). Both systems were coupled to perform the continuous on-line separation/detection of both inorganic mercury and methylmercury species. Separation and detection conditions were optimized by two chemometric approaches: full factorial design and central composite design. A limit of detection of 0.4 microg L(-1) was obtained for both mercury species (RSD < 3.0% for 20 microg L(-1) inorganic and methylmercury solutions). The method was applied to mercury speciation in natural waters of the Nerbioi-lbaizabal estuary (Bilbao, North of Spain) and recoveries of more than 95% were obtained.  相似文献   

19.
Despite an increasing focus on low level methods for determination of mercury species in water over the last decades, few studies have paid attention to direct effects of different sample preparation methods (i.e. preservation techniques) on natural freshwater samples. In this study we show how different preservation techniques give significantly different concentrations of total and methylmercury in freshwaters (9 and 14% on average, respectively). Natural stream samples from a forested lake catchment were studied. Mean stream sample concentrations of total (3.6 ng/L) and methylmercury (0.06 ng/L) reflect levels typical for pristine humic boreal catchments. The main reason for the observed average differences in total and methylmercury concentrations is the use of one instead of two sample bottles and timing of sample acidification, respectively.  相似文献   

20.
Since mercuric mercury (Hg(2+)) and methylmercury (CH(3)Hg(+)) display different toxicological properties in mammals, methods for their quantification in dietary items must be available. Employing Hg-specific detection, we have developed a rapid, isocratic, and affordable RP-HPLC separation of these mercurials using thiol-containing mobile phases. Optimal separation was achieved with a 50mM phosphate-buffer containing 10mM L-cysteine at pH 7.5. The separation is driven by the on-column formation of complexes between each mercurial and L-cysteine, which are then separated according to their different hydrophobicities. The developed method is compatible with inductively coupled plasma atomic emission spectrometry and was applied to analyze spiked human urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号