首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
A simple, rapid and sensitive high performance liquid chromatographic method was developed for the separation and quantification of positional isomers of zafirlukast in bulk drugs and dosage forms using a chiral column. Elution time was 20 min in normal phase mode and ultra violet detection was carried out at 240 nm. Efficient separation was achieved on an immobilized amylose-based Chiralpak-IA column using n-hexane/ethanol/trifluoroacetic acid/diethyl amine (65:35:0.1:0.1, v/v) as the mobile phase. Resolutions between ortho, meta and para isomers of zafirlukast were found to be >3.0. The active pharmaceutical ingredient was extracted from tablets using tetrahydrofuran. The calibration graphs for meta and para isomers of zafirlukast were linear (r 2 > 0.999) when ranging from the limit of quantitation to 0.3%. The method showed excellent recoveries for both zafirlukast isomers identified in bulk and formulated products. The test solution was found to be stable in the mobile phase for 48 h after preparation. The developed LC method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

2.
3.
4.
A simple and rapid reversed‐phase high‐performance liquid chromatographic method for the separation and determination of 4‐amino‐azobenzene‐4′,5‐disulfonic acid (AABDS) and its process‐related impurities was developed. The separation was achieved on a μ‐Bondapak C18 column using 0.15 M ammonium sulfate‐acetonitrile (55:45) (v/v) as eluent. A UV‐visible spectrophotometric detector fixed at 386 nm was used both for detection and quantitation. The method was used not only for quality assurance but also for process development and wastewater management of AABDS.  相似文献   

5.
4,4′‐Diaminostilbene‐2,2′‐disulfonic acid based fluorescent whitening agents (DSD‐FWAs) are prohibited in food‐contact paper and board in many countries. In this work, a reliable high‐performance liquid chromatography method was developed for the simultaneous determination of 11 common DSD‐FWAs in paper material. Sample preparation and extraction as well as chromatographic separation of multicomponent DSD‐FWAs were successfully optimized. DSD‐FWAs in prepared samples were ultrasonically extracted with acetonitrile/water/triethylamine (40:60:1, v/v/v), separated on the C18 column with the mobile phase containing tetrabutylammonium bromide, and then detected by a fluorescence detector. The limits of detection were 0.12–0.24 mg/kg, and the calibration curves showed the linear correlation (R2 ≥ 0.9994) within the range of 8.0–100 ng/mL, which was equivalent to the range of 0.80–10 mg/kg in the sample. The average recoveries and the RSDs were 81–106% and 2–9% at two fortification levels (1.0 and 5.0 mg/kg) in paper bowls, respectively. The successful determination of 11 DSD‐FWAs in food‐contact paper and board obtained from local markets indicated that the newly developed method was rapid, accurate, and highly selective.  相似文献   

6.
A simple, rapid and economical method was developed and validated for the analysis and quantification of 1‐(propan‐2‐ylamino)‐4‐propoxy‐9H ‐thioxanthen‐9‐one (TX5), a P‐glycoprotein inducer/activator, in biological samples, using reverse‐phase high‐performance liquid chromatography (HPLC). A C18 column and a mobile phase composed of methanol–water (90/10, v /v) with 1% (v/v) triethylamine, at a flow rate of 1 mL/min, were used for chromatographic separation. TX5 standards (0.5–150 μm ) were prepared in human serum. Methanol was used for TX5 extraction and serum protein precipitation. After filtration, samples were injected into the HPLC apparatus and TX5 was quantified by a conventional UV detector at 255 nm. The TX5 retention time was 13 min in this isocratic system. The method was validated according to ICH guidelines for specificity/selectivity, linearity, accuracy, precision, limits of detection and quantification (LOD and LOQ) and recovery. The method was proved to be selective, as there were no interferences of endogenous compounds with the same retention time of TX5. Also, the developed method was linear (r 2 ≥ 0.99) for TX5 concentrations between 0.5 and 150 μm and the LOD and LOQ were 0.08 and 0.23 μm , respectively. The results indicated that the reported method could meet the requirements for TX5 analysis in the trace amounts expected to be present in biological samples.  相似文献   

7.
An LC‐MS/MS method for the simultaneous quantitation of niacin (NA) and its metabolites, i.e. nicotinamide (NAM), nicotinuric acid (NUA) and N‐methyl‐2‐pyridone‐5‐carboxamide (2‐Pyr), in human plasma (1 mL) was developed and validated using nevirapine as an internal standard (IS). Extraction of the NA and its metabolites along with the IS from human plasma was accomplished using a simple liquid–liquid extraction. The chromatographic separation of NA, NAM, NUA, 2‐Pyr and IS was achieved on a Hypersil‐BDS column (150 ¥ 4.6 mm, 5 mm) column using a mobile phase consisting of 0.1% formic acid : acetonitrile (20:80 v/v) at a flow rate of 1 mL/min. The total run time of analysis was 2 min and elution of NA, NAM, NUA, 2‐Pyr and IS occurred at 1.37, 1.46, 1.40, 1.06 and 1.27 min, respectively. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 100–20000 ng/mL for NA; 10–1600 ng/mL for NUA and NAM and 50–5000 ng/mL for 2‐Pyr with mean correlation coefficient of ≥0.99 for each analyte. The method was sensitive, specific, precise, accurate and suitable for bioequivalence and pharmacokinetic studies. The developed assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and rapid high‐performance liquid chromatographic method with ultraviolet detection was developed for the quantitative determination of retigabine, known also as ezogabine, in human plasma. The assay uses a simple solid‐phase extraction for sample preparation and direct injection of the extract into the chromatograph. Flupirtine is used as an internal standard. Chromatographic separation is achieved on a C18 Chromolith column (Chromolith Performance, 100 × 4.6 mm i.d.), using as mobile phase water/acetonitrile/methanol (72:18:10 v/v/v) mixed with 0.1% of 85% phosphoric acid. Isocratic elution is conducted at a flow rate of 1.5 mL min−1. The total duration of a chromatographic run is 7 min. Calibration curves are linear over the 25–2000 ng mL−1 concentration range, with a limit of quantitation of 25 ng mL−1. Other performance characteristics include high precision (intra‐ and inter‐day coefficients of variation ≤12.6%) and high accuracy (99.7%–108.7%). The method is suitable for the investigation of concentration–response relationships in patients receiving therapeutic doses of retigabine.  相似文献   

9.
An accurate, sensitive and least time consuming reverse phase high performance liquid chromatographic (RP‐HPLC) method for the estimation of captopril in the presence of non steroidal anti‐inflammatory drugs in formulation and human serum has been developed and validated. Chromatographic separation was conducted on prepacked Purospher star C18 (5 μm, 25 × 0.46 cm) column at room temperature using methanol:water (80:20 v/v) as a mobile phase, pH adjusted at 2.8 with o‐phosphoric acid and at a flow rate of 1.0 mL min−1, while UV detection was performed at 227 nm. The limit of detection and quantification for captopril were 1 and 0.35 ng mL−1, while that for (NSAID's) i.e. flurbiprofen, ibuprofen, diclofenac sodium and mefenamic acid LOD were 0.2, 1, 2 and 0.4 ng mL−1 respectively and LOQ were 0.9, 2.9, 8 and 1 ng mL−1 Analytical recovery was > 98.1%. The method used for the quantitative analysis of commonly administered non steroidal anti‐inflammatory drugs (NSAID's) i.e. ibuprofen, flurbiprofen, diclofenac sodium and mefenamic acid alone or in combination with captopril from API (active pharmaceutical ingredients), dosage formulations and in human serum. The established method is rapid (RT < 12 min), accurate (recovery > 98.1%), selective (no interference of excepients and other commonly used drugs and food) and sensitive (LOQ 3.5 ng mL;‐1) and reproducible (SD ± 0.003).  相似文献   

10.
Neopanaxadiol (NPD), a major ginsenoside in Panax ginseng C. A. Meyer (Araliaceae), was reported to have neuroprotective effect. In this study, a method of ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC/QTOF‐MS) was developed and validated for quantitative analysis of NPD in tissues, urine and feces, using liquid–liquid extraction (LLE) to isolate NPD from different biological samples, and chromatographic separation was performed on an Agilent Zorbax Stable Bond C18 (2.1 × 50 mm, 1.8 µm) column with 0.1% formic acid in water and acetonitrile. All standard calibration curves were linear (all r2 > 0.995) within the test range. After oral administration, NPD was extensively distributed to most of the tissues without long‐term accumulation. The higher levels were observed in stomach and intestine, followed by kidney and liver. Approximately 64.56 ± 20.32% of administered dose in feces and 0.0233 ± 0.0356% in urine were found within 96 h, which indicated that the major elimination route was fecal excretion. This analytical method was applied to the study of NPD distribution and excretion in rats after oral intake for the first time. The results we found here are helpful for us to understand the pharmacological effects of NPD, as well as its toxicity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive and specific high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC‐ESI‐MS/MS) method was developed and validated for determination of rupestonic acid in rat plasma. Protein precipitation method was used to extract rupestonic acid and the internal standard (IS) warfarin sodium from rats plasma. The chromatographic separation was performed on an Agela Venusil XBP Phenyl column with an isocratic mobile phase consisting of methanol–0.1% formic acid in water (40:60, v/v), pumped at 0.4 mL/min. Rupestonic acid and the internal standard (IS) warfarin sodium were detected at m/z 247.2 → 203.1 and 307.1 → 161.3 in positive ion and multiple reaction monitoring mode respectively. The standard curves were linear over the concentration range of 2.5–5000 ng/mL (r2 > 0.99). The within‐day and between‐day precision values for rupestonic acid at four concentrations were 4.7–5.7 and 4.4–8.7%, respectively. The method described herein was fully validated and successfully applied to the pharmacokinetic study after an intravenous administration of rupestonic acid in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A high‐performance liquid chromatographic (HPLC) method with integrated solid‐phase extraction for the determination of 1‐hydroxypyrene and 1‐, 2‐, 3‐, 4‐ and 9‐hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid‐phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core–shell column using a methanol gradient. For quantification, time‐programmed fluorescence detection was used. Matrix‐dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC‐fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra‐high‐performance liquid chromatography pentafluorophenyl core–shell column and coupled to a high‐resolution time‐of‐flight mass spectrometer (HR‐TOF‐MS). The resulting method was used to demonstrate the applicability of LC‐HR‐TOF‐MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter.  相似文献   

13.
Separation of minor compounds especially with similar polarities and structures from complex samples is a challenging work. In the present study, an efficient method was successfully established by macroporous resin column chromatography, medium‐pressure liquid chromatography, and high‐speed countercurrent chromatography for separation of four minor flavonoids from barley seedlings. Macroporous resin column chromatography and medium‐pressure liquid chromatography were used for enrichment of these four flavonoids. High‐pressure liquid chromatography analysis showed the total content of these four flavonoids increased from 2.2% in the crude extract to 95.3% in the medium‐pressure liquid chromatography fraction. It was indicated that the combination of macroporous resin column chromatography and medium‐pressure liquid chromatography could be a practicable strategy for enrichment of minor compounds from complex sample. Then, high‐speed countercurrent chromatography was employed for separation of these four flavonoids using ethyl acetate/n‐butanol/water (0.1% glacial acetic acid) (4:1:5, v/v/v) as solvent system. As a result, four flavonoids including two isomers with purities higher than 98% were obtained. Interestingly, two flavonoids existing in one high‐pressure liquid chromatography peak were also successfully separated. All these indicated high‐speed countercurrent chromatography had great potential for separation of compounds with similar structures and polarities. This study provides a reference for efficient enrichment and separation of minor compounds from complex sample.  相似文献   

14.
Counter‐current chromatography is a chromatographic technique with a support‐free liquid stationary phase. In the present study, a successful application of linear gradient counter‐current chromatographic method for preparative isolation of bioactive components from the crude ethanol extract of Zanthoxylum planispinum was presented. The application of n‐hexane/ethyl acetate/methanol/water quaternary solvents, in terms of “HEMWat” or “Arizona” solvent families, in gradient elution mode was evaluated. Results indicated that slightly proportional changes of biphasic liquid systems provided the possibility of gradient elution in counter‐current chromatography, maintaining stationary phase retention in the column. With the selected quaternary solvent systems composed of n‐hexane/ethyl acetate/methanol/water (2:1:2:1 and 3:2:3:2, v/v), and optimized gradient programs, in total seven fractions were separated in 4.5 h. Most of the purified compounds could be obtained at the milligram level with over 80% purity. The present study indicated that the linear gradient counter‐current chromatographic approach possessed unique advantages in terms of separation efficiency, exhibiting great potential for the comprehensive separation of complex natural extracts.  相似文献   

15.
A simple and rapid method was developed for the determination of three free cytokinins, namely, N6‐(Δ2‐isopentenyl)adenine, zeatin, and dihydrozeatin, in plants using TurboFlow on‐line cleanup liquid chromatography combined with hybrid quadrupole‐Orbitrap high‐resolution mass spectrometry. The samples were extracted using acetonitrile, and then the extract was purified on a C18‐p column, in which the sample matrix was removed and the analytes were retained. Subsequently, the analytes were eluted from the extraction column onto the analytical column (Hypersil Gold C18 column) prior to chromatographic separation and hybrid Q‐Orbitrap detection using the targeted‐MS2 scan mode. The linearity was satisfactory with a correlation coefficient of >0.999 at concentrations ranging from 5–5000 pg/mL. The limits of quantification for the analytes ranged from 4.2–5.2 pg/mL. The intra‐ and inter‐day average recoveries of analytes fortified at three levels ranged from 85.4–108.2%, and the intra‐ and inter‐day relative standard deviations ranged from 4.04–8.57%. The method was successfully applied for the determination of free cytokinins in different tissue samples of Oryza sativa and Arabidopsis thaliana.  相似文献   

16.
An ion‐moderated partition high‐performance liquid chromatography method was developed for the separation and identification of common organic carbonates. The separation of organic carbonates was achieved on an ion exclusion column with an exchangeable hydrogen ion. An isocratic, aqueous mobile phase was used for elution and detection was performed with a refractive index detector. The developed method was validated for specificity, linearity, limits of detection and quantification, precision and accuracy. All calibration curves showed excellent linear regression (R2 > 0.9990) within the testing range. The limits of detection were 3.8–30.8 ppm for the analyzed carbonates. Improvements in the peak resolution of the chromatograms were achieved by decreasing the column temperature. Addition of the organic modifier, acetonitrile, to the eluent was found to have insignificant effects on the peak resolution. The developed method was demonstrated for analyzing organic carbonate components in the electrolyte system of a commercial lithium ion battery.  相似文献   

17.
An accurate, sensitive and least time consuming reverse phase high performance liquid chromatographic (RP‐HPLC) method for the estimation of ceftriaxone in the presence of non steroidal anti‐inflammatory drugs in formulation and human serum has been developed and validated. Chromatographic separation was conducted on prepacked Purospher Star, C18 (5 μm, 250 × 4.6 mm) column at room temperature using methanol:water:acetonitrile (80:15:5 v/v/v) as a mobile phase, pH adjusted at 2.8 with ortho‐phosphoric acid and at a flow rate of 1.0 mL/minute, while UV detection was performed at 270 nm. The results obtained showed a good agreement with the declared content. The method shows good linearity in the range of 2.5‐25 μg/mL ceftriaxone serum concentrations with a correlation coefficient 0.999 (inter‐ and intra‐day RSD < 2.0%). The limit of detection and quantification for ceftriaxone and NSAID's in pharmaceutical formulation and serum were in the range 0.51‐1.54 μg/mL. Analytical recovery was >98.1%. The proposed method may be used for the quantitative analysis of commonly administered non steroidal anti‐inflammatory drugs i.e. tiaprofenic acid, naproxen sodium, flurbiprofen, diclofenac acid and mefenamic acid alone or in combination with ceftriaxone from raw materials, dosage formulations and in serum. The established HPLC method is rapid, accurate and selective, because of its sensitivity and reproducibility.  相似文献   

18.
A high‐performance liquid chromatographic method was developed for the analysis of 3'‐hydroxypterostilbene. This method involves the use of a Luna® C18 column with ultraviolet detection at 325 nm. The mobile phase consisted of acetonitrile, water and formic acid (50:50:0.01, v/v/v) with a flow rate of 0.8 mL/min. The calibration curves were linear over the range 0.5–100.0 µg/mL. The mean extraction efficiency was between 97.40 and 111.16%. The precision of the assay was 0.196–14.39% (RSD%), and within 15% at the limit of quantitation (0.5 µg/mL). The bias of the assay was <16% and within 15% at the limit of quantitation. This assay was successfully applied to pre‐clinical pharmacokinetic samples from rat urine and serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
LC method with the newly introduced second‐generation monolithic silica RP‐18e column has been developed for the separation of FeIII(salophene) and four methoxy‐substituted FeIII(salophene) complexes. The method has been validated for the quantitation of FeIII(4‐OMe‐salophene), a highly active anticancer substance in vitro, bound to serum albumin. Our routinely used high‐resolution continuum‐source atomic absorption spectroscopy method based on the determination of the central iron atom was unsuitable in this case because serum originally contains significant amounts of iron as revealed by a blank sample of serum albumin. The developed LC method depends on detecting the whole complex rather than the bound iron. Two morphologically different first‐ and second‐generation HPLC monolithic columns have been compared for this purpose. The newly introduced second‐generation monolithic silica column Chromolith® HighResolution RP‐18e column (100 × 4.6 mm, Merck) separated the mixture successful within 13 min. A mobile phase consisting of 25 mM phosphate buffer pH 3/methanol (60:40, v/v) was used at a flow rate of 1 mL/min. The dynamic linear working range of the calibration curve for FeIII(4‐OMe‐salophene) was found to be between 1 and 200 μg/mL. Detection and quantitation limits were 0.3 and 1 μg/mL, respectively.  相似文献   

20.
A simple, rapid and sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) assay method is proposed for the determination of tolvaptan in human plasma samples using tolvaptan d7 as internal standard (IS). Analyte and the IS were extracted from 100 μL of human plasma via simple liquid–liquid extraction. The chromatographic separation was achieved on a C18 column using a mixture of methanol and 0.1% formic acid buffer (80:20, v/v) as the mobile phase at a flow rate of 1.0 mL/min. The calibration curve obtained was linear (r2 ≥ 0.99) over the concentration range of 0.05–501 ng/mL. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The intra‐day and inter‐day precision (coefficient of variation) and accuracy results in three validation batches across five concentration levels were well within the acceptance limits. A run time of 2.0 min for each sample made it possible to analyze more samples in a short time, thus increasing the productivity. The proposed method was successfully applied to a pharmacokinetic study of 15 mg and 60 mg tolvaptan tablet formulation in healthy South Indian male subjects under fasting condition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号