首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
采用固相法制备了(0.8 -x)Na0.5 Bi0.5TiO3 -0.2K0.5Bi0.5TiO3-xBaMnO3(简称NBT-KBT-BM)无铅压电陶瓷,研究了不同BM含量(x=0,0.25%,0.50%,0.75%,1.00%,1.25%,物质的量分数)样品的物相组成、显微结构及电性能.结果表明:所制备的NBT-KBT-BM陶瓷样品均为单一的钙钛矿结构.与纯NBT-KBT陶瓷相比,掺BM陶瓷的烧结温度降低,相对密度ρr得到提高.随x的增加,材料的压电常数d33、平面机电耦合系数kp与机械品质因子Qm先增大后减小,而介电损耗tanδ以及退极化温度Td一直降低.BM的掺入降低了材料的矫顽场Ec,提高了剩余极化强度Pr,从而增强了铁电性.当x=0.75%时,陶瓷获得最佳性能:d33=167 pC/N,kp=0.269,Qm=133,εr=774,tanδ=2.93%.  相似文献   

2.
采用传统固相烧结方法制备出0.94(Ri0.5+xNa0.5-x)TiO3-0.06BaTiO3(BNBT6)二元系无铅压电陶瓷(x分别为0,0.08;,0.12;,0.16;,0.24;和0.50;摩尔分数),系统地研究了不同Na/Bi配比对BNT基陶瓷材料物相结构、显微组织和压电、介电性能的影响.结果表明:添加不同的Na/Bi,所制备的BNBT6压电陶瓷组织分布均匀、致密度高,存在三方-四方共存的准同型相界结构,且不同的Na/Bi配比不影响陶瓷的相结构,但其烧结性能及电性能与Na/Bi配比密切相关,当x=0.16;时,BNBT6陶瓷样品的性能最佳,相对密度达到97;,在1 kHz的测试频率下,BNBT6陶瓷样品的压电常数d33为138 PC/N、介电常数εr为1486、介电损耗tanδ为2.1;、机械品质因数Qm为217.  相似文献   

3.
采用固相法制备了(1-x)(Na0.9 K0.1)05Bi0.TiO3-xBa0.7Ca0.3 TiO3[(1-x)NKBT-xBCT]无铅压电陶瓷.研究了不同BCT含量(x=0,0.02,0.04,0.05,0.06,0.07)对NKBT陶瓷结构与电性能的影响.结果表明:所有样品均形成纯的钙钛矿结构,体系陶瓷的准同行相界(MPB)位于0.04≤x≤0.06.随着BCT掺量的增加,样品的退极化温度Td逐渐向低温方向移动,压电常数d33和平面机电耦合系数kp均先升高后降低.系列陶瓷电性能较佳:x=0.05时,kp最大,为0.29.当x=0.06时,样品的综合性能较好,其中d33=168 pC/N,kp=0.26,相对介电常数εr=1280,介质损耗tanδ =3.7;,剩余极化强度Pr=37 μC/cm2,矫顽场Ec =18.8 kV/cm.变温电滞回线和介电温谱表明体系陶瓷在Td以上可能存在极性相与非极性相共存.  相似文献   

4.
采用固相反应合成法制备了(1-x)(0.96Bi0.5Na0.5TiO3-0.04BaTiO3)-xBi(Zn0.5 Ti0.5)O3陶瓷(x≤0.10).通过X射线衍射,介电温度谱等对该体系陶瓷的相结构及弛豫特性进行了研究.结果发现,该陶瓷在Bi(Zn0.5Ti05)O3加入量低于0.05时呈现纯钙钛矿结构.此外,随着Bi(Zn0.5Ti0.5)O3加入量的增加,其相结构由三方-四方共存向赝立方结构转变;同时,陶瓷的弥散因子上升,偶极子取向冻结活化能下降,表明BZT的加入明显地增加了0.96Bi0.5Na0.5TiO3-0.04 BaTiO3陶瓷的弛豫性.  相似文献   

5.
采用固相反应法制备了(1-x)Na0.5Bi0.5TiO3-K0.5Na0.5NbO3体系陶瓷,研究了KNN含量对Na0.5Bi0.5TiO3-xK0.5Na0.5NbO3陶瓷的晶体结构、显微结构和介电性能的影响。XRD分析结果表明,KNN进入NBT形成固溶体,该体系陶瓷均为钙钛矿结构。扫描电镜分析显示KNN的引入有利于细化晶粒,提高陶瓷致密度。测试了样品在不同频率(1 kHz,10 kHz,100 kHz,1 MHz)下的的介电温谱(室温~500℃),结果表明随着KNN含量的增加,介电峰逐渐变宽,弛豫性逐渐增强,铁电-反铁电相变温度Td和反铁电-顺电相变Tm都明显降低,当x≥0.25时,Td降至室温或更低;室温(1 kHz)下,KNN和NBT相对介电常数分别为675和575,而KNN和NBT形成的固溶体介电常数明显增大,当x=0.25时,达到最大值εr=1653。在NBT中掺入KNN得到了介电峰明显宽化、在较宽温度范围内具有低电容温度系数的致密弛豫铁电体。  相似文献   

6.
BNT-BKT-BiFeO3无铅压电陶瓷的压电性能和退极化温度   总被引:3,自引:3,他引:0  
采用传统陶瓷制备方法,制备了系列新型无铅压电陶瓷材料(1-x-y)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3-yBiFeO3(简写为BNT-BKT-BF-x/y).研究了该体系陶瓷微观结构、压电性能和退极化温度变化规律.结果表明:在所研究的组成范围内,所制备的材料均能够形成纯钙钛矿固溶体,陶瓷三方、四方共存的准同型相界(MPB)成分为x=0.18~0.21,y=0~0.05,在准同型相界成分附近该体系陶瓷压电性能达到最大值:d33=171pC/N,kp=0.366.采用平面机电耦合系数kp和极化相位角θmax与温度的关系来确定退极化温度,得到的结果基本相同,陶瓷的退极化温度随BF含量的增加一直降低,随BKT含量的增加先降低后升高.  相似文献   

7.
采用固相反应法制备了0.99Bi0.47Na0.47Ba0.06TiO3-0.01KNbO3+x mol% CuO(x =0,0.25,0.5,1,2)(BNBT-1% KN +x mol%CuO)无铅压电陶瓷.使用XRD、Agilent4294A精密阻抗分析仪等对该体系的结构、电学性能进行表征.结果显示所制备的压电陶瓷具有纯的钙钛矿结构;CuO掺杂能够对材料的电学性能有很大影响,少量掺杂能使铁电材料“硬化”.在x=0.5时,陶瓷样品的电性能达到:d33=170 pC/N,kp=24%,Qm=157,tanδ=2.1%,ε33=874;此外还发现少量的CuO还能提高BNBT-1% KN的退极化温度,在x=0.5时陶瓷具有最高的温度稳定性,退极化温度Td达到99℃.  相似文献   

8.
采用固相法制备了(1-x)(K0.49Na0.51)(Nb0.97 Ta0.03) O3-xBi0.5 Na0.5 ZrO3(KNNT-BNZ,x=0,0.01,0.02,0.03,0.04,0.05)无铅压电陶瓷,研究了Bi0.5 Na0.5ZrO3 (BNZ)的掺杂量对KNNT-BNZ陶瓷相结构、微观结构和电性能的影响.结果表明:KNNT-BNZ陶瓷具有纯的钙钛矿结构,随着BNZ掺杂量x的增加,陶瓷从正交相转变为四方相,并在0.03≤x≤0.04出现正交-四方两相共存的多型相转变区域.在该多型相转变区域靠近四方相的边界x =0.04处,陶瓷具有优异的电性能:压电常数d33 =317 pC/N,机电耦合系数kP=36.4;,机械品质因数Qm=68,介电常数ε3T/ε0=1225,介电损耗tanδ =3.1;,剩余极化强度Pr=20.5 μC/cm2,矫顽场Ec=1.16 kV/mm,居里温度Tc=310℃.  相似文献   

9.
采用传统固相烧结法制备0.92(Na0.51K0.49-xLix)NbO3-0.02K0.5Bi0.5TiO3-0.06BaZrO3(简写为NKLNx-KBT-BZ,x=0.00~0.05)系无铅压电陶瓷.用X射线衍射仪、扫描电子显微镜、精密阻抗分析仪及铁电性能测试仪等研究了Li+含量对该体系陶瓷的晶相、显微结构和电性能的影响.结果表明:在研究组成范围内,陶瓷均具有单一的钙钛矿结构,随着Li+含量的增加,晶体结构从菱方转变为四方结构,并且经过菱方-四方两相共存的准同型相界(MPB)组成区域0.01 <x <0.03.在MPB区域的四方相边界x=0.03处获得优异的电性能:d33=227 pC/N,kp=39.3;,Qm=69,εT33/ε0=1642,tanδ =2;,Pr=13.3μC/cm2,Ec=1.64 kV/mm.  相似文献   

10.
采用固相合成法制备了(1-x)(Na1/2Bi1/2)TiO3-x(Na1/2Bi1/2)(Zn/23Nb2/3)O3(简写为(1-x)NBT-xNBZN)无铅压电陶瓷.研究了该体系陶瓷晶体结构、弥散相变特征与介电弛豫行为.X射线衍射分析表明,所研究的组成均能够形成纯钙钛矿(ABO3)型固溶体.当x≥0.5%摩尔分数时,该体系陶瓷具有三方、四方共存的晶体结构.材料的介电常数-温度曲线显示陶瓷具有两个介电反常峰Tf和Tm.修正的居里-外斯公式较好的描述了陶瓷弥散相变特征,弥散指数随x的增加而增加.x≤0.5%摩尔分数的陶瓷仅在低温介电反常峰Tf附近表现出明显的频率依赖性,随x的增加,陶瓷材料在室温和低温介电反常峰Tf之间都表现出明显的频率依赖性.根据有序-无序转变和宏畴.微畴转变理论探讨了该体系陶瓷介电弛豫特性的机理.  相似文献   

11.
采用弛豫铁电体(Sr0.7Bi0.2)TiO3与铁电体(Bi0.5Na0.5)TiO3构建了的新型二元系BNT基无铅陶瓷材料:(1-x)(Bi0.5Na0.5)TiO3-x(Sr0.7Bi0.2)TiO3(记为BNT-xSBT,x=10mol;、20mol;、30mol;和40mol;).通过传统固相法进行制备,研究了(Sr0.7 Bi0.2)TiO3取代对其结构、相变、铁电性能和储能特性的影响.结果表明,室温所测BNT-xSBT陶瓷为准立方结构;介温和铁电性则证实其为极性三方和非极性四方共存相结构.A位复合占位的BNT-xSBT陶瓷是典型的弛豫铁电体,其Tm随x的增大而减小.低温(Td)处的介电反常源于结构(三方和四方)起伏所引起的缓慢转变过程.(Sr0.7 Bi0.2)TiO3取代量增大时,其Td降低,四方相增多,并伴随非极性微区增长;并导致BNT-xSBT陶瓷的铁电性减弱和电滞回线变形.x=30mol;时,BNT-xSBT陶瓷具有大的Pmax=26.8μC/cm2、小的Pr=1.4μC/cm2,和较好的储能特性:W=0.74 J/cm3,η=68.5;(@70 kV/cm).  相似文献   

12.
用丝网印刷法在印有Pt电极的Al2O3基片上制备了BaTiO3(BT)掺杂Bi0.5(Na0.82K0.18)0.5 TiO3(BNKT)厚膜,研究了BT掺杂对BNKT厚膜相结构、微观形貌、介电、压电及铁电性能的影响.研究发现,(1-x)BNKT-xBaTiO3厚膜体系的准同型相界(MPB)位于3mol;相似文献   

13.
采用传统陶瓷制备方法,制备了一种B位多离子复合铁电体Bi(Zn1/2Ti1/2)O3改性BNT无铅压电陶瓷(1 -x)( Bi1/2 Nay2) TiO3-xBi( Zn1/2Ti1/2) O3(简写为(1-x)BNT- xBZT,x=O,0.01,0.02,0.03,0.04).研究了BZT对该体系陶瓷微结构和压电性能的影响.结果表明:在所研究的组成范围内,BZT不改变陶瓷的晶体结构,同时抑制晶粒长大.添加BZT明显改善陶瓷的压电常数d33,但机电耦合系数kp变化不明显.分析了影响压电常数d33与机电耦合系数kp的不同作用机理,发现陶瓷内部存在的内应力是引起压电常数d33变化的一个重要因素.  相似文献   

14.
BiMnO_3改性BNT-BKT压电陶瓷的研究   总被引:3,自引:1,他引:2  
为了提高BNT基压电陶瓷的电性能,采用传统的陶瓷制备方法,制备了一种Bi基的钙钛矿型无铅压电陶瓷 (1-x)Bi_(0.5)(Na_(0.82)K_(0.18))_(0.5)TiO_3-xBiMnO_3 (简写为BNKT-BMx).研究了Bi基铁电体BiMnO_3对该体系陶瓷微观结构和压电介电性能的影响.结果表明:在所研究的组成范围内陶瓷材料均能够形成纯钙钛矿固溶体,微量BiMnO_3不改变该体系陶瓷的晶体结构,但促进晶粒生长.随着BiMnO_3含量增加,低温介电反常峰消失,高温介电峰出现频率分散性.随BiMnO_3含量增加,压电常数d_(33)和机电耦合系数k_p先增加后降低,在x=0.01时,k_p=0.333,x=0.015时,d_(33)=170 pC/N,为该体系陶瓷压电性能的最优值.  相似文献   

15.
采用MOSD+Dipping方法在P型Si(111)衬底上制备了0.87Na0.5Bi0.5TiO3-0.13PbTiO3薄膜.用X射线衍射技术研究了薄膜的结构和结晶性.用原子力显微镜分析了薄膜的表面形貌.同时还研究了薄膜的存储性能.  相似文献   

16.
织构化K0.5Na0.5NbO3无铅压电陶瓷的性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以分析纯Na2CO3、Bi2O3和Nb2O5为原料,以NaCl为熔盐,采用二次熔盐法和拓扑化学反应法合成各向异性片状NaNbO3粉体.以该片状NaNbO3粉体为模板品粒,以固相法合成的NaNbO3和KNbO3粉体为基料,采用流延工艺制备出较高取向度的织构化K0.5Na0.5NbO3(KNN)无铅压电陶瓷,系统研究了模板含量、烧结温度和保温时间等工艺参数对织构化KNN陶瓷显微结构和压电性能的影响规律.研究结果表明:随着模板含量的增加,陶瓷的取向度逐渐增加,当模板含量为15 wt;时,陶瓷的取向度可达0.69,当模板含量为10 wt;,1100 ℃下保温5 h烧结,可以获得具有一定织构度(f=0.58)的KNN陶瓷,并表现出优异的压电性能,d33=128 pC/ N.  相似文献   

17.
本文研究了具有四方结构的(Na1-xKx)0.5Bi0.5TiO3体系中x=0.22,0.26和0.30陶瓷材料不同温度下的电滞回线,结合变温XRD和介电温谱分析,发现该体系四方结构的组成为反铁电体,但紧靠准同型相界的四方结构由于场诱导下引起的反铁电-铁电相变,表现出铁电体特性,材料在升温过程中由于反铁电宏畴向微畴的转变导致了介电峰的产生,且在介电温谱上表现出强烈的介电常数-频率依赖性,为弛豫铁电体特征.  相似文献   

18.
Crystallography Reports - Single-phase ceramic samples from the region of morphotropic phase boundary in the (1–x)(Na0.5Bi0.5)TiO3–xBaTiO3 and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号