首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
以熔盐法和质子取代法制备的片状Nb2O5粉体为模板晶粒,固相法合成的(Na0.8K0.2)0.5Bi0.5TiO3(NKBT)粉体为基料,分别采用固相压制成型(干法)和流延成型(湿法)工艺制备出具有较高取向度的织构化NKBT无铅压电陶瓷,研究了两种成型工艺对NKBT无铅压电陶瓷的显微结构、压电性能和介电性能的影响。结果表明:采用湿法工艺制备的织构陶瓷的各项性能优于干法工艺,采用湿法工艺在1150℃保温5 h时,可以获得较高织构度(f=0.66)的NKBT无铅压电陶瓷,并具有优异的压电和介电性能:压电常数d33=149 pC/N,介电常数εT33/ε0=912和平面机电耦合系数kp=29.4%。  相似文献   

2.
以片状的SrTiO3(ST)粉体为模板晶粒,以固相法合成的掺杂Bi2O3的SrTiO3粉体为基体粉料,采用反应模板晶粒生长法(RTGG)结合流延成型工艺制备出SrTiO3织构陶瓷,研究了烧结工艺参数对SrTiO3织构陶瓷显微组织结构和介电性能的影响规律。研究结果表明:SrTiO3织构陶瓷的晶粒沿(100)晶面择优取向生长,陶瓷的织构度随着烧结温度的升高和保温时间的延长而增大,在1550℃下保温16 h的陶瓷试样织构度最大,达到0.56。SrTiO3织构陶瓷的介电常数随着织构度的增加而增大,并呈现出介电各向异性。  相似文献   

3.
熔盐法制备铌酸钾钠粉体的研究   总被引:1,自引:0,他引:1  
以分析纯Na2CO3,K2CO3和Nb2O5为原料,以Na2CO3-K2CO3(摩尔比1:1)为熔盐,采用熔盐法在700~850℃保温4h合成了Na0.5K0.5NbO3粉体。研究了合成温度、熔盐含量对粉体形貌的影响。XRD分析结果表明:通过熔盐法可以在700℃下合成纯钙钛矿结构的Na0.5K0.5NbO3粉体;SEM分析显示:随着合成温度的升高,粉体形貌从圆球状转变为立方状,进一步提高合成温度,粉体形貌开始变得不规则;此外,合成粉体的尺寸随着熔盐含量的增加而增大,且粉体团聚现象明显减弱。以熔盐法合成的Na0.5K0.5NbO3粉体为原料,采用传统固相烧结法制备Na0.5K0.5NbO3陶瓷,经1060℃烧结后,Na0.5K0.5NbO3陶瓷具有优异的压电性能和介电性能,其中压电常数d33=124pC/N,介电常数εT/ε=345,居里温度T达402℃。  相似文献   

4.
以分析纯Bi2O3、Na2CO3和Nb2O5为原料,以NaCl为熔盐,采用熔盐法合成出片状Bi2.5Na3.5Nb5O18(简称BNN5)晶体。研究了合成温度、保温时间和熔盐含量对BNN5晶体形貌的影响。结果表明:随着合成温度的提高、保温时间的延长和熔盐含量的增加,BNN5粉体的尺寸逐渐增大。当熔盐与总反应物的质量比为1∶1,在1100℃下保温3 h时,可以制备出片状的BNN5晶体,其边长为12~24μm,厚度为0.5~2μm,有望成为外延生长001NaNbO3片状晶体的理想模板。  相似文献   

5.
两步熔盐法制备片状NaNbO_3晶体   总被引:5,自引:4,他引:1  
以分析纯Bi2O3、Na2CO3和Nb2O5为原料,采用两步熔盐法合成出片状NaNbO3。首先以NaCl为熔盐,在1100℃保温3 h合成出片状中间体Bi2.5Na3.5Nb5O18(简称BNN5)晶粒;然后以BNN5为模板晶粒,以NaCl为熔盐,在950℃保温3 h制备出片状NaNbO3。通过XRD和SEM分析表明:所制备的NaNbO3晶体为纯钙钛矿相,NaNbO3晶粒呈各向异性片状,其边长约为12μm,厚约为0.6μm,并探讨了BNN5转变为片状形貌NaNbO形成机理。  相似文献   

6.
采用溶胶-凝胶法制备(1-x)Na0.5Bi0.5 TiO3-xK0.5Bi0.5TiO3体系无铅压电陶瓷.XRD分析表明,用溶胶-凝胶法可以在650℃下合成具有钙钛矿结构的(1-x)Na0.5Bi0.5TiO3-xK0.5Bi0.5TiO3粉体,且在x=0.18~0.30之间存在三方-四方准同型相界(MPB).陶瓷的压电性能参数表明,该体系在MPB组成范围内具有最佳的压电性能:x=0.30时,压电常数d33达到最大值(d33=150 Pc·N-1),平面机电耦合系数kp与介电常数εH33T/ε0均在x=0.26时达到最大值,分别为36.7%和1107.  相似文献   

7.
采用固相反应法制备了(1-x)Na0.5Bi0.5TiO3-K0.5Na0.5NbO3体系陶瓷,研究了KNN含量对Na0.5Bi0.5TiO3-xK0.5Na0.5NbO3陶瓷的晶体结构、显微结构和介电性能的影响。XRD分析结果表明,KNN进入NBT形成固溶体,该体系陶瓷均为钙钛矿结构。扫描电镜分析显示KNN的引入有利于细化晶粒,提高陶瓷致密度。测试了样品在不同频率(1 kHz,10 kHz,100 kHz,1 MHz)下的的介电温谱(室温~500℃),结果表明随着KNN含量的增加,介电峰逐渐变宽,弛豫性逐渐增强,铁电-反铁电相变温度Td和反铁电-顺电相变Tm都明显降低,当x≥0.25时,Td降至室温或更低;室温(1 kHz)下,KNN和NBT相对介电常数分别为675和575,而KNN和NBT形成的固溶体介电常数明显增大,当x=0.25时,达到最大值εr=1653。在NBT中掺入KNN得到了介电峰明显宽化、在较宽温度范围内具有低电容温度系数的致密弛豫铁电体。  相似文献   

8.
以Na2CO3、K2CO3、Nb2O5和KCl为原料,采用拓扑化学反应法合成出一维方向生长钙钛矿结构的棒状KxNa1-xNbO3(KNN)粉体。首先采用熔盐法合成出棒状的前驱体K2Nb8O21晶体,系统研究了Nb2O5与KCl的起始质量比、合成温度对K2Nb8O21晶体显微结构和形貌的影响,研究发现当Nb2O5与KCl的质量比为3/8,850℃下保温3 h可以获得长度为80~100μm,直径为3~8μm的棒状K2Nb8O21晶体,且晶体沿[100]方向生长;然后以棒状的前驱体K2Nb8O21为模板晶粒,采用拓扑化学反应法制备出棒状KNN晶体,研究了Na2CO3的添加量、烧成温度和保温时间对棒状KNN晶体显微结构和形貌的影响。结果表明:添加过量10wt%的Na2CO3,在900℃下保温3 h可以获得沿[001]方向生长的棒状KNN晶体,其中K/Na=47.31/52.69,接近1/1,其长度和宽度分别为30~50μm和2~6μm。  相似文献   

9.
采用固相法制备了(0.8 -x)Na0.5 Bi0.5TiO3 -0.2K0.5Bi0.5TiO3-xBaMnO3(简称NBT-KBT-BM)无铅压电陶瓷,研究了不同BM含量(x=0,0.25%,0.50%,0.75%,1.00%,1.25%,物质的量分数)样品的物相组成、显微结构及电性能.结果表明:所制备的NBT-KBT-BM陶瓷样品均为单一的钙钛矿结构.与纯NBT-KBT陶瓷相比,掺BM陶瓷的烧结温度降低,相对密度ρr得到提高.随x的增加,材料的压电常数d33、平面机电耦合系数kp与机械品质因子Qm先增大后减小,而介电损耗tanδ以及退极化温度Td一直降低.BM的掺入降低了材料的矫顽场Ec,提高了剩余极化强度Pr,从而增强了铁电性.当x=0.75%时,陶瓷获得最佳性能:d33=167 pC/N,kp=0.269,Qm=133,εr=774,tanδ=2.93%.  相似文献   

10.
采用共沉淀法合成YAG粉体,经过配料、干压成型和真空烧结制备YAG多孔陶瓷材料,并研究发泡剂含量对YAG多孔陶瓷的性能影响。结果表明:YAG多孔陶瓷随着发泡剂含量逐渐增多,其气孔率逐渐增高,抗压强度逐渐降低。烧结温度升高,气孔率下降,抗压强度升高。保温时间延长,气孔率降低,抗压强度升高,但是YAG多孔陶瓷的性能对于烧结温度和保温时间而言,烧结温度相对更为敏感。综合整个烧结工艺及性价比,YAG多孔陶瓷发泡剂含量为15wt%并在1550℃烧结保温1 h较为适宜。  相似文献   

11.
采用沸腾回流法制备了单相Ni0.5Zn0.5Fe2O4颗粒,并对其进行了PAA包覆,得到了Ni0.5Zn0.5Fe2O4/PAA复合纳米颗粒,并在交变磁场的诱导下进行自组装,得到了一维纳米线。室温磁滞回线表明,PAA的包覆降低了Ni0.5Zn0.5Fe2O4颗粒的饱和磁化强度和矫顽力,分别为21.1 emu/g和3.2 Oe。偏光显微照片表明,在交变磁场磁性模板自我强化作用的影响下,制备的软磁铁氧体复合物在0.05 T的磁场中仍有较敏感的响应,形成一维纳米线。SEM照片表明,纳米线直径200 nm,长径比大于100,线体本身则由纳米复合物形成的小团聚体首尾相连构成。  相似文献   

12.
采用传统固相反应法制备了xLi0.5Bi0.5MoO4-(1-x)Li2Zn2(MoO4)3 [xLBM-(1-x)LZM]复合陶瓷,研究添加不同质量分数(x=25%,30%,35%,40%和45%)的LBM对LZM陶瓷的烧结特性、物相组成、微观结构以及微波介电性能的影响。结果表明:添加一定量的LBM不仅能将LZM的谐振频率温度系数(τf)调节近零,还能降低LZM的烧结致密化温度;LBM可与LZM共存,且不发生化学反应生成其他新相。随着LBM添加量增加,复合陶瓷的烧结致密化温度逐渐降低、体积密度先增大后减小、介电常数(εr)与τf逐渐增大而品质因数(Q×f)逐渐减小。当LBM添加量为40%时,LZM-LBM复合陶瓷在600 ℃烧结2 h获得最大体积密度为4.41 g/cm3,以及优异的微波介电性能:εr为13.8,Q×f为28 581 GHz,τf为-4×10-6/℃。  相似文献   

13.
采用固相烧结法制备一系列Er3+单掺与Er3+/Yb3+共掺0.96Na0.5Bi0.5TiO3-0.04CaTiO3(NBT-CT∶xEr3+/yYb3+,x=0.002~0.015,y=0.010)无铅压电陶瓷。通过X射线衍射仪和荧光光谱仪分别对样品的物相结构和上转换发光特性进行表征和分析。结果表明,样品的主晶相为NBT晶相。在波长为980 nm的近红外光激发下,Er3+单掺与Er3+/Yb3+共掺NBT-CT陶瓷均呈现强的以绿光为主的Er3+特征上转换发光。在NBT-CT∶xEr3+中,当x=0.010时上转换发光性能最佳;Yb3+能够起到敏化作用,明显增强Er3+的上转换发光强度。  相似文献   

14.
以碳酸盐和氧化物为原料,通过凝胶浇注法制得了Sm0.5Sr0.5Co1-xFexO3-δ(SSCF,x=0~1.0)粉体,对不同温度煅烧所得粉体的相组成和微观形貌进行了测定。制备的Sm0.5Sr0.5Co1-xFexO3-δ粉体模压成形后烧结得到SSCF烧结体。测定了烧结体的密度和孔隙率并对烧结体的微观结构进行了观测,用直流四端子法测定了烧结样品的电导率并对其热膨胀系数及电化学性能等进行了测定。结果表明:干凝胶在1000℃煅烧可以得到粒度均匀细小的SSCF粉体,其晶体结构随Fe含量发生变化;一定温度烧结的Sm0.5Sr0.5Co1-xFexO3-δ材料具有多孔结构,随烧结温度的增加,烧结体的密度增大,孔隙率减小;Fe的掺杂降低了Sm0.5Sr0.5CoO3-δ材料的热膨胀系数,Sm0.5Sr0.5Co0.2Fe0.8O3-δ材料在800℃时的热膨胀系数为16.4×10-6K-1;SSCF材料的电导率随Fe含量的增加而减小,但在500~800℃,其电导率均大于100S.cm-1。此外,SmSrCoFeO材料均表现出良好的催化活性。  相似文献   

15.
采用传统的固相法合成了近零膨胀氧化物功能陶瓷材料Zr0.5Hf0.5V1.4P0.6O7,用X射线衍射(XRD)、Raman光谱和热膨胀法对Zr0.5Hf0.5V1.4P0.6O7的热膨胀系数、各向同性和相变进行了测试,通过Hf4+/P5+共掺杂使得材料具有较低的热膨胀系数,研究发现合成的Zr0.5Hf0.5V1.4P0.6O7具有Pa3立方相结构,从334 K附近到673 K较宽的温度范围内的线性热膨胀系数为-1.56×10-6 K-1,表现出稳定的近零热膨胀特性。由于固溶体内部微结构的影响造成膨胀仪实验结果与变温X射线衍射结果存在一定的差距。Zr0.5Hf0.5V1.4P0.6O7具有的近零膨胀特性为通过负热膨胀材料合成膨胀系数可控的材料提供了基础。  相似文献   

16.
BNT-BKT-BiFeO_3无铅压电陶瓷的压电性能和退极化温度   总被引:3,自引:3,他引:0  
采用传统陶瓷制备方法,制备了系列新型无铅压电陶瓷材料(1-x-y)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3-yBiFeO3(简写为BNT-BKT-BF-x/y).研究了该体系陶瓷微观结构、压电性能和退极化温度变化规律.结果表明:在所研究的组成范围内,所制备的材料均能够形成纯钙钛矿固溶体,陶瓷三方、四方共存的准同型相界(MPB)成分为x=0.18~0.21,y=0~0.05,在准同型相界成分附近该体系陶瓷压电性能达到最大值:d33=171pC/N,kp=0.366.采用平面机电耦合系数kp和极化相位角θmax与温度的关系来确定退极化温度,得到的结果基本相同,陶瓷的退极化温度随BF含量的增加一直降低,随BKT含量的增加先降低后升高.  相似文献   

17.
采用固相合成法制备了0.94(Na1/2Bi1/2)TiO3-0.06BaTiO3(BNBT)陶瓷粉体,用传统压电陶瓷工艺制备了无铅压电陶瓷,研究了烧结工艺对其径向收缩率和相对密度的影响。结果表明:随着保温时间的增加,径向收缩率和相对密度都出现了极大值。将陶瓷粉体与分散剂均匀混合制成高固相含量的浆料,以SrTiO3(100)单晶基片做模板,通过流延法制备了晶粒定向生长模型材料,初步探讨了热处理工艺对晶粒定向生长习性的影响。结果表明,随着保温时间的增加,晶体生长层厚度增加,生长层致密度增大。  相似文献   

18.
ABSTRACT

The study of the structural, morphology and magnetic properties of Zn0.5Co0.5Fe2O4 ferrite is the objective of this work. The sample was prepared by hydrothermal method and was characterized by X-ray diffraction (XRD), (SEM) and (TEM) micrographs and magnetization measurements.

The magnetic hysteresis loops, field cooling (FC) and zero field cooling (ZFC) curves, in temperature range (0-400K), were measured using XL-SQUID magnetometer and the values of blocking temperatures (TB) were determined. The results indicated that Zn0.5Co0.5Fe2O4 sample were formed in a single spinel phase and gives the value for the lattice parameter (8.3952 Å) and nanosizes of particles (13.8 nm) were compared with these obtained from ZnFe2O4 sample prepared also by synthesis method (8.4261 Å and 14 nm). Although, the superparamagnetic behaviour for Co-Zn ferrite has observed at 350K with a blocking temperature (TB = 300K), that is maximum at the value obtained in the case of Zn-ferrite (TB = 12K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号