首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have investigated the unintentional impurities, oxygen and carbon, in GaN films grown on c-plane, r-plane as well as m-plane sapphire by metal-organic chemical vapor deposition. The GaN layer was analyzed by secondary ion mass spectroscopy. The different trend of the incorporation of oxygen and carbon has been explained in the polar (0 0 0 1), nonpolar (1 1 2¯ 0) and semipolar (1 1 2¯ 2) GaN by a combination of the atom bonding structure and the origin direction of the impurities. Furthermore, it has been found that there is a stronger yellow luminescence (YL) in GaN with higher concentration of carbon, suggesting that C-involved defects are originally responsible for the YL.  相似文献   

2.
Gallium nitride (GaN) epitaxial layers were grown with different V/III ratios by varying the ammonia (NH3) flow rate, keeping the flow rate of the other precursor, trimethylgallium (TMG), constant, in an MOCVD system. X-ray rocking curve widths of a (1 0 2) reflection increase with an increase in V/III ratio while the (0 0 2) rocking curve widths decrease. The dislocation density was found to increase with an increase in ammonia flow rate, as determined by hot-wet chemical etching and atomic force microscopy. 77 K photoluminescence studies show near band emission at 3.49 eV and yellow luminescence peaking at 2.2 eV. The yellow luminescence (YL) intensity decreases with an increase in V/III ratio. Positron annihilation spectroscopy studies show that the concentration of Ga-like vacancies increases with an increase in ammonia flow rate. This study confirms that the yellow luminescence in the GaN arises due to deep levels formed by gallium vacancies decorated with oxygen atoms.  相似文献   

3.
We fabricated one-dimensional GaN nanorods on AlN/Si (1 1 1) substrates at various temperatures, and carrier gas flow amount, using the hydride vapor phase epitaxy (HVPE) method. An AlN buffer layer of 50 nm thickness was deposited by RF sputtering for 25 min. Stalagmite-like GaN nanorods formed at a growth temperature of 650 °C. The diameters and lengths of GaN nanorods increase with growth time, whereas the density of nanorods decreases. And we performed the experiments by changing the carrier gas flow amount at a growth temperature of 650 °C and HCl:NH3 flow ratio of 1:40. GaN nanorods, with an average diameter of 50 nm, were obtained at a carrier gas flow amount of 1340 sccm. The shape, structures, and optical characteristics of the nanorods were investigated by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence.  相似文献   

4.
We have investigated the growth of magnesium-doped GaP (GaP:Mg) layers on GaN by metalorganic chemical vapor deposition. The hole carrier concentration increased linearly from 0.8×1018 to 4.2×1018 cm−3 as the Bis(cyclopentadienyl) magnesium (Cp2Mg) mole flow rate increased from 1.2×10−7 to 3.6×10−7 mol/min. However, the hole carrier concentration decreased when the CP2Mg mole flow rate was further increased. The double crystal X-ray diffraction (DCXRD) rocking curves showed that the GaP:Mg layers were single crystalline at low CP2Mg molar flow. However, the GaP:Mg layers became polycrystalline if the CP2Mg molar flow was too high. The decrease in hole carrier concentration at high CP2Mg molar flow was due to crystal quality deterioration of the GaP layer, which also resulted in the low hole mobility of the GaP:Mg layer.  相似文献   

5.
High voltage GaN Schottky diodes require a thick blocking layer with an exceptionally low carrier concentration. To this aim, a metal organic chemical vapor deposition process was developed to create a (14 μm) thick stress-free homoepitaxial GaN film. Low temperature photoluminescence measurements are consistent with low donor background and low concentration of deep compensating centers. Capacitance–voltage measurements performed at 30 °C verified a low level of about 2×1015 cm−3 of n-type free carriers (unintentional doping), which enabled a breakdown voltage of about 500 V. A secondary ion mass spectrometry depth profile confirms the low concentration of background impurities and X-ray diffraction extracted a low dislocation density in the film. These results indicate that thick GaN films can be deposited with free carrier concentrations sufficiently low to enable high voltage rectifiers for power switching applications.  相似文献   

6.
Several key improvements in crystal quality of bulk GaN grown by the ammonothermal method are presented. Full width at half maximum of (0 0 2) X-ray rocking curve was reduced to 53 and 62 arcsec for Ga-side and N-side, respectively. Transparent bulk GaN crystal was also demonstrated. Oxygen and sodium concentrations were reduced to mid-1018 and mid-1015 cm−3, respectively. We are currently searching for a growth condition that produces transparent bulk GaN with high structural quality and low impurities. Small-sized, semi-transparent GaN wafers were fabricated by slicing the grown bulk GaN crystals, which demonstrate the high feasibility of ammonothermal growth for production of GaN wafers.  相似文献   

7.
The properties of GaN crystals grown from solution at temperatures ranging from 780 to 810 °C and near atmospheric pressure ∼0.14 MPa, have been investigated using low temperature X-band (∼9.5 GHz) electron paramagnetic resonance spectroscopy, micro-Raman spectroscopy, photoluminescense spectroscopy, and photoluminescence imaging. Our samples are spontaneously nucleated thin platelets of approximate dimensions of 2×2×0.025 mm3, or samples grown on both polycrystalline and single crystal HVPE large-area (∼3×8×0.5 mm3) seeds. Electron paramagnetic resonance spectra consists of a single Lorentzian line with axial symmetry about the c-axis, with approximate g-values, g=1.951 and g=1.948 and a peak-to-peak linewidth of∼4.0 G. This resonance has been previously assigned to shallow impurity donors/conduction electrons in GaN and attributed to Si- and/or O impurities. Room temperature photoluminescence and photoluminescence imaging data from both Ga- and N-faces show different dominant emission bands, suggesting different incorporation of impurities and/or native defects. Raman scattering and X-ray diffraction show moderate to good crystalline quality.  相似文献   

8.
The electron cyclotron resonance plasma-enhanced metalorganic chemical vapor deposition technology (ECR–MOPECVD) is adopted to grow GaN films on (0 0 0 1) α-Al2O3 substrate. The gas sources are pure N2 and trimethylgallium (TMG). Optical emission spectroscopy (OES) and thermodynamic analysis of GaN growth are applied to understand the GaN growth process. The OES of ECR plasma shows that TMG is significantly dissociated in ECR plasma. Reactants N and Ga in the plasma, obtained easily under the self-heating condition, are essential for the GaN growth. They contribute to the realization of GaN film growth at a relatively low temperature. The thermodynamic study shows that the driving force for the GaN growth is high when N2:TMG>1. Furthermore, higher N2:TMG flow ratio makes the GaN growth easier. Finally, X-ray diffraction, photoluminescence, and atomic force microscope are applied to investigate crystal quality, morphology, and roughness of the GaN films. The results demonstrate that the ECR–MOPECVD technology is favorable for depositing GaN films at low temperatures.  相似文献   

9.
This paper reports a study of the effect of NH3 flow rate on m-plane GaN growth on m-plane SiC with an AlN buffer layer. It is found that a reduced NH3 flow rate during m-plane GaN growth can greatly improve the recovery of in situ optical reflectance and the surface morphology, and narrow down the on-axis (1 0 1¯ 0) X-ray rocking curve (XRC) measured along the in-plane a-axis. The surface striation along the in-plane a-axis, a result of GaN island coalescence along the in-plane c-axis, strongly depends on the NH3 flow rate, an observation consistent with our recent study of kinetic Wulff plots. The pronounced broadening of the (1 0 1¯ 0) XRC measured along the c-axis is attributed to the limited lateral coherence length of GaN domains along the c-axis, due to the presence of a high density of basal-plane stacking faults, most of which are formed at the GaN/AlN interface, according to transmission electron microscopy.  相似文献   

10.
High quality, straight GaN nanowires (NWs) with diameters of 50 nm and lengths up to 3 μm have been grown on Si(0 0 1) using Au as a catalyst and the direct reaction of Ga with NH3 and N2:H2 at 900 °C. These exhibited intense, near band edge photoluminescence at 3.42 eV in comparison to GaN NWs with non-uniform diameters obtained under a flow of Ar:NH3, which showed much weaker band edge emission due to strong non-radiative recombination. A significantly higher yield of β-Ga2O3 NWs with diameters of ≤50 nm and lengths up to 10 μm were obtained, however, via the reaction of Ga with residual O2 under a flow of Ar alone. The growth of GaN NWs depends critically on the temperature, pressure and flows in decreasing order of importance but also the availability of reactive species of Ga and N. A growth mechanism is proposed whereby H2 dissociates on the Au nanoparticles and reacts with Ga giving GaxHy thereby promoting one-dimensional (1D) growth via its reaction with dissociated NH3 near or at the top of the GaN NWs while suppressing at the same time the formation of an underlying amorphous layer. The higher yield and longer β-Ga2O3 NWs grow by the vapor liquid solid mechanism that occurs much more efficiently than nitridation.  相似文献   

11.
Nonpolar (1 1–2 0) a-plane GaN films have been grown using the multi-buffer layer technique on (1–1 0 2) r-plane sapphire substrates. In order to obtain epitaxial a-plane GaN films, optimized growth condition of the multi-buffer layer was investigated using atomic force microscopy, high resolution X-ray diffraction, and transmission electron microscopy measurements. The experimental results showed that the growth conditions of nucleation layer and three-dimensional growth layer significantly affect the crystal quality of subsequently grown a-plane GaN films. At the optimized growth conditions, omega full-width at half maximum values of (11–20) X-ray rocking curve along c- and m-axes were 430 and 530 arcsec, respectively. From the results of transmission electron microscopy, it was suggested that the high crystal quality of the a-plane GaN film can be obtained from dislocation bending and annihilation by controlling of the island growth mode.  相似文献   

12.
Thermogravimetric analysis (TGA) and microstructural observations were carried to investigate the nitridation mechanism of β-Ga2O3 powder to GaN under an NH3/Ar atmosphere. Non-isothermal TGA showed that nitridation of β-Ga2O3 starts at ∼650 °C, followed by decomposition of GaN at ∼1100 °C. Isothermal TGA showed that nitridation follows linear kinetics in the temperature range 800–1000 °C. At an early stage of nitridation, small GaN particles (∼5 nm) are deposited on the β-Ga2O3 crystal surface and they increase with time. We proposed a mechanism for the nitridation of Ga2O3 by NH3 whereby nitridation of β-Ga2O3 proceeds via the intermediate vapor species Ga2O(g).  相似文献   

13.
The bowing curvature of the free-standing GaN substrate significantly decreased almost linearly from 0.67 to 0.056 m−1 (i.e. the bowing radius increased from 1.5 to 17.8 m) with increase in inductively coupled plasma (ICP) etching time at the N-polar face, and eventually changed the bowing direction from convex to concave. Furthermore, the influences of the bowing curvature on the measured full width at half maximum (FWHM) of high-resolution X-ray diffraction (HRXRD) in (0 0 2) reflection were also deduced, which reduced from 176.8 to 88.8 arcsec with increase in ICP etching time. Decrease in the nonhomogeneous distribution of threading dislocations and point defects as well as VGa–ON complex defects on removing the GaN layer from N-polar face, which removed large amount of defects, was one of the reasons that improved the bowing of the free-standing GaN substrate. Another reason was the high aspect ratio of needle-like GaN that appeared at the N-polar face after ICP etching, which released the compressive strain of the free-standing GaN substrate. By doing so, crack-free and extremely flat free-standing GaN substrates with a bowing radius of 17.8 m could be obtained.  相似文献   

14.
The anisotropic film properties of m-plane GaN deposited by metal organic vapour phase epitaxy (MOVPE) on LiAlO2 substrates are investigated. To study the development of layer properties during epitaxy, the total film thickness is varied between 0.2 and 1.7 μm. A surface roughening is observed caused by the increased size of hillock-like features. Additionally, small steps which are perfectly aligned in (1 1 −2 0) planes appear for samples with a thickness of ∼0.5 μm and above. Simultaneously, the X-ray rocking curve (XRC) full width at half maximum (FWHM) values become strongly dependent on incident X-ray beam direction beyond this critical thickness. Anisotropic in-plane compressive strain is initially present and gradually relaxes mainly in the [1 1 −2 0] direction when growing thicker films. Low-temperature photoluminescence (PL) spectra are dominated by the GaN near-band-edge peak and show only weak signal related to basal plane stacking faults (BSF). The measured background electron concentration is reduced from ∼1020 to ∼1019 cm−3 for film thicknesses of 0.2 μm and ∼1 μm while the electron mobilities rise from ∼20 to ∼130 cm2/V s. The mobilities are significantly higher in [0 0 0 1] direction which we explain by the presence of extended planar defects in the prismatic plane. Such defects are assumed to be also the cause for the observed surface steps and anisotropic XRC broadening.  相似文献   

15.
We investigated the properties of Ge-doped, high-quality bulk GaN crystals with Ge concentrations up to 2.4×1019 cm−3. The Ge-doped crystals were fabricated by hydride vapor phase epitaxy with GeCl4 as the dopant source. Cathodoluminescence imaging revealed no increase in the dislocation density at even the highest Ge concentration, with values as low as 3.4×106 cm−2. The carrier concentration, as determined by Hall measurement, was almost identical to the combined concentration of Ge and unintentionally incorporated Si. The electron mobilities were 260 and 146 cm2 V−1 s−1 for n=3.3×1018 and 3.35×1019 cm−3, respectively; these values are markedly larger than those reported in the past for Ge-doped GaN thin films. The optical absorption coefficient was quite small below the band gap energy; it slightly increased with increase in Ge concentration. Thermal conductivity, estimated by the laser-flash method, was virtually independent of Ge concentration, maintaining an excellent value around 2.0 W cm−1 K−1. Thermal expansion coefficients along the a- and m-axes were approximately constant at 5.0×10−6 K−1 in the measured doping concentration range.  相似文献   

16.
The main limitation in the application of hydride vapor phase epitaxy for the large scale production of thick free-standing GaN substrates is the so-called parasitic deposition, which limits the growth time and wafer thickness by blocking the gallium precursor inlet. By utilizing Cl2 instead of the usual HCl gas for the production of the gallium chlorine precursor, we found a rapid increase in growth rate from ∼80 to ∼400 μm/h for an equally large flow of 25 sccm. This allowed us to grow, without any additional optimization, 1.2 mm thick high quality GaN wafers, which spontaneously lifted off from their 0.3° mis-oriented GaN on sapphire HCl-based HVPE templates. These layers exhibited clear transparencies, indicating a high purity, dislocation densities in the order of 106 cm−2, and narrow rocking curve XRD FWHMs of 54 and 166 arcsec in for the 0002 and 101−5 directions, respectively.  相似文献   

17.
Zinc-blende GaN quantum dots were grown on 3C-AlN(0 0 1) by a vapor–liquid–solid process in a molecular beam epitaxy system. We were able to control the density of the quantum dots in a range of 5×108–5×1012 cm−2. Photoluminescence spectroscopy confirmed the optical activity of the GaN quantum dots in a range of 1011–5×1012 cm−2. The data obtained give an insight to the condensation mechanism of the vapor–liquid–solid process in general, because the GaN quantum dots condense in metastable zinc-blende crystal structure supplied by the substrate, and not in the wurtzite crystal structure expected from free condensation in the droplet.  相似文献   

18.
We have succeeded in effectively stopping the propagation of basal stacking faults in (1 1 −2 2) semipolar GaN films on sapphire using an original epitaxial lateral overgrowth process. The growth conditions were chosen to enhance the growth rate along the [0 0 0 1] inclined direction. Thus, the crystal expands laterally until growth above the a-facet of the adjacent crystal seed, where the basal stacking faults emerge. The growth anisotropy was monitored using scanning electron microscopy. The faults filtering and improvement of crystalline quality were attested by transmission electron microscopy, X-ray diffraction and low temperature photoluminescence, which exhibits high intensity band-edge emission with low stacking faults related emission.  相似文献   

19.
Nitrogen was incorporated into ZnO films grown by metalorganic chemical vapour deposition (MOCVD) on ZnO substrates using DMZn-TEN, tert-butanol and diallylamine, respectively, as zinc, oxygen and doping sources. The carrier gas was either hydrogen or nitrogen and the partial pressure ratio (RVI/II) was varied in order to favor the nitrogen incorporation and/or reduce carbon related defects. The ZnO films have been characterized by Micro-Raman scattering and SIMS measurements. SIMS measurements confirm the nitrogen incorporation with concentrations extending from ∼1019 cm−3 to ∼4×1020 cm−3. Raman spectra show nitrogen local vibration modes in films grown at low RVI/II ratio and using H2 as carrier gas. However, a vibration band attributed to carbon clusters dominates the Raman spectra for films grown with N2 carrier. The contribution of N complexes was discussed. The strain was calculated for the as-grown and annealed films and it changes from tensile to compressive after annealing.  相似文献   

20.
Barium chlorapatite [Ba5Cl(PO4)3] and strontium chlorapatite [Sr5Cl(PO4)3] crystals were grown from a sodium chloride flux. The aspect ratios for these crystals were distributed in the range 1–9, and maximum number of crystals was observed in the range 3–4 for both chlorapatite crystals. The contact angle of water on (1 0 1? 0) face of each chlorapatite crystal was observed using a modified Wilhelmy method, where the change of liquid weight was measured instead of the crystal weight. The contact angle depends on the aspect ratio of the crystal. Both the advancing and the receding contact angles showed maximum value when the aspect ratios of the crystals were approximately 4 for both Ba5Cl(PO4)3 and Sr5Cl(PO4)3 crystals. The specific surface free energy of (1 0 1? 0) face was calculated using Neumann’s equation. The (1 0 1? 0) face of the crystals of the aspect ratio 4 has a minimum specific surface free energy, indicating that they have the most stable (1 0 1? 0) face when the aspect ratio is 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号