首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of ongoing studies to evaluate relationships between structure and rates of dissolution of silicate glasses in aqueous media, sodium borosilicate glasses of composition Na2O·xB2O3·(3 − x)SiO2, with x ≤ 1 (Na2O/B2O3 ratio ≥ 1), were analyzed using deep-UV Raman spectroscopy. Results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. The Q3 fraction was found to increase with increasing Na2O content, in agreement with studies on related glasses, and, as long as the value of x was not too high, this contributed to higher rates of dissolution in single pass flow-through testing. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity, and appeared to grow larger upon further reduction of the Q3 fraction. Results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.  相似文献   

2.
《Journal of Non》2007,353(16-17):1612-1617
Sodium borosilicate glasses containing different amounts of BaO were prepared by a conventional melt quench method and characterized for their structural aspects by 29Si, 11B NMR and IR spectroscopy. From 29Si MAS NMR studies, it has been inferred that these glasses consist of Q2 and Q3 structural units of silicon and that the addition of BaO results in the marginal conversion of Q3 to Q2 structural units. There is no direct interaction between Ba2+ ions and boron structural units, as revealed by the identical values of the relative concentration of BO3 and BO4 structural units and quadrupolar coupling constant values for the BO3 structural units. The identical values of glass transition temperature and vibrational frequencies corresponding to Si–O–Si/Si–O–B and B–O linkages of all the samples further support this. As the borosilicate network is unaffected, the systematic increase in the values of thermal expansion coefficient with increase in BaO content has been attributed to the increase in the relative concentration of less rigid Ba–O linkages compared to the more rigid Si–O and B–O linkages in the glass. Such studies will be useful for the development of matrices for the management of nuclear waste generated during the reprocessing of the spent fuel from thoria based reactors.  相似文献   

3.
The results of a structural study combining NMR and Raman spectroscopy of several melt-derived glasses in the system Na2O–MgO–CaO–P2O5–SiO2 are presented. The Raman spectra show clear changes in the Si–O–Si vibrational modes (related to the bridging oxygen atoms, BO) and also verify the presence of non-bridging oxygen atoms (NBO), also named terminal oxygens. The intensity of the Si–O–NBO stretching mode depends on the cation concentration. It can be concluded from the NMR studies that the MgO-containing samples have orthophosphate units charge-compensated by Ca2+ and Mg2+. The silicate matrix also contains both types of two-valent cations and consists of Q2 and Q1 units. Similarly, the Na2O-containing samples contain isolated orthophosphate units in a silicate matrix (Q2 and Q3 units), both charge-compensated by mixed cations Ca2+ and Na+. These experimental data were compared with theoretical parameters given by the Stevels model, which is a suitable tool for understanding bioactive behavior of these glasses. Furthermore, results of the in vitro tests carried out in simulated body fluids are presented and compared with both Raman and NMR structural data.  相似文献   

4.
W.J. Malfait  W.E. Halter 《Journal of Non》2008,354(34):4107-4114
The use of a Carr-Purcell-Meiboom-Gill (CPMG) echotrain to increase the 29Si NMR sensitivity in glasses was investigated. The echo intensity decay follows a stretched exponential behavior M(t) = M0 exp[−(t/t2)β] with values for the exponent β in the range of 0.41-0.65. The signal to noise in the spectra can be increased by a factor of up to 4 by taking the weighted sum of the spectra obtained from the individual echoes. However, differential T2 relaxation for the different Qn species is observed, with a shorter relaxation time for Q4 than Q3. Thus, summing of the echoes leads to distorted spectral intensities and quantitative information can no longer be obtained from the spectra. To circumvent the problem with differential T2 relaxation, an alternative approach is developed in which the spectral intensity for each chemical shift value is determined from the stretched exponential fit to its echo decay. With this approach, the sensitivity can be increased by a factor of up to 2.4, while quantitative information can still be obtained from the spectra. The increased sensitivity permitted the detection of five-coordinated silicon in a potassium silicate glass with natural 29Si abundance at ambient pressure.  相似文献   

5.
In the present study we report the results of 29Si, 27Al, 31P and 19F magic angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR) of 4.5SiO2-3Al2O3-1.5P2O5-(5−z)CaO-zCaF2 glasses with z = 0-3 to elucidate the effect of fluoride content on the glass structure. The 29Si MAS-NMR spectra gave a chemical shift of about −90 ppm corresponding to Q3(3Al) and Q4(3Al). The 27Al MAS-NMR showed a large broad central peak around 50 ppm, which is assigned to four-coordinated Al linked via oxygen to P. A shoulder around 30 ppm and a small peak at about 0 to −10 ppm appeared in the 27Al MAS-NMR spectra of the glasses on increasing the fluoride content assigned to five-coordinated and six-coordinated Al species, respectively. The 31P MAS-NMR spectra indicated the presence of Al-O-P bonds. The 31P chemical shift decreased with increasing fluoride content as a result of calcium being complexed with fluoride. This resulted in a reduction of the number of available cations to charge balance non bridging oxygens in phosphorus and an increase in the number of Al-O-P bonds being formed, instead. The 19F spectra indicated the presence of Al-F-Ca(n) and F-Ca(n) species in all the glasses containing fluoride as well as an additional Si-F-Ca(n) species in the glasses with higher fluoride content.  相似文献   

6.
《Journal of Non》2006,352(28-29):2952-2957
Barium borosilicate glasses containing as much as 18.6 wt% ThO2 have been prepared by a conventional melt–quench method and characterized by 29Si and 11B magic angle spinning nuclear magnetic resonance (MAS NMR), Infrared (IR) absorption and differential thermal analysis (DTA) techniques for their structural features. Based on 29Si and 11B MAS NMR and IR investigations, it has been established that the borosilicate network is not affected by such a large ThO2 incorporation. Whereas Si exists as Q3 and Q2 structural units in the ratio of ∼0.7, boron exists in both trigonal (BO3) and tetrahedral (BO4) configurations and their relative concentrations are not affected by ThO2 incorporation in these glasses. The higher extent of ThO2 incorporation in barium borosilicate glasses compared to borosilicate glasses has been attributed to the increased number of non-bridging oxygen atoms present in the barium borosilicate glasses. Based on DTA measurements it has been shown that there is neither any change in the glass transition temperature nor the occurrence of any crystallization up to 1000 °C, for ThO2 incorporation up to 18.6 wt% in these glasses. For higher concentrations of ThO2, there is phase separation during glass formation and fine crystallites of ThO2 are formed as revealed by XRD. These findings are of significance for the nuclear waste management related to thorium fuel cycle.  相似文献   

7.
The effect of the variation in phosphate (P2O5) content on the structure of two series of bioactive glasses in the quaternary system SiO2-Na2O-CaO-P2O5 was studied. The first series (I) was a simple substitution of P2O5 for SiO2 keeping the Na2O:CaO ratio fixed (1.00:0.87). The second series was designed to ensure charge neutrality in the orthophosphate , therefore as P2O5 was added the Na2O and CaO content was varied to provide sufficient Na+ and Ca2+ cations to charge balance the orthophosphate present. The glass network connectivity (NC) was calculated for each glass and a modification for the presence of a separate P2O5 phase was included (NC′). 31P and 29Si magic-angle-spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was performed on glass series I and II to determine the structural units present and their relation to glass properties. 31P MAS-NMR spectra of series I resulted in a broad resonance around 9 ppm corresponding to orthophosphate in an amorphous environment. The 9.25 mol% P2O5 glass shown to be partially crystalline by X-ray diffraction was heat treated, and the 31P MAS-NMR spectrum showed a sharp peak around 3 ppm corresponding to calcium orthophosphate or sodium pyrophosphate and overlapping broader peaks at 8.5, 10.5 and 14 ppm possibly corresponding to two mixed calcium-sodium orthophosphate phases and amorphous sodium orthophosphate respectively. 31P MAS-NMR spectra of series II resulted in a broad resonance around 10.5 ppm corresponding to orthophosphate in an amorphous environment. 29Si MAS-NMR spectra of glasses from series I showed a shift in the resonance peak from around −78 to −86 ppm indicating an increase in Q3 species in the glass and a reduction in Q2 with phosphate addition confirming the presence of orthophosphate. The heat treated sample showed a sharp 29Si-NMR resonance at −88 ppm, indicating a crystalline Q2 six-membered combeite (Na2O · 2CaO · 3SiO2) silicate-type phase, which was confirmed by powder X-ray diffraction. 29Si MAS-NMR spectra of glasses from series II showed no shift in the resonance at around −78 ppm across the series, confirming an orthophosphate environment.  相似文献   

8.
Raman spectroscopy is used here as an innovative technique to investigate sulfate content in borosilicate glasses. Using Raman spectroscopy after having heated the material, the evolution of sulfate amounts can be followed as a function of temperature, time and chemical composition of the starting matrix. The accuracy of this technique was verified using electron probe micro analysis (EPMA), on two systems of glasses (SiO2–B2O3–Na2O (SBNa) and SiO2–B2O3–BaO (SBBa)) in order to compare the effect of alkaline or alkaline-earth elements on sulfur speciation and incorporation. To quantitate sulfate content with Raman spectroscopy, the integrated intensity of the sulfate band at 990 cm?1 was scaled to the sum of the integrated bands between 850 and 1250 cm?1, bands that are assigned to Qn silica units. Calibration curves were then determined for different samples. The determination of sulfate contents with Raman spectroscopy analysis is possible with an accuracy of approximately 0.1 wt% depending on the composition of the glass. It mainly allows us to follow sulfate removal during the elaboration process and to establish kinetic curves of sulfate release as a function of the viscosity of the borosilicate glass.  相似文献   

9.
17O MQMAS NMR was used to characterize the influence of zirconium on the structural organization of soda-lime borosilicate glasses. A new method of quantitative analysis of the 17O MQMAS spectra is presented, by a direct fit of the two-dimensional MQMAS spectrum which provides the resolution of all the structural groups in glasses containing up to five oxides. Additional data were also obtained from the quantitative deconvolution of the 11B MAS NMR spectra, with the help of the direct fit of MQMAS data as well. Excess of non-bridging oxygen is clearly identified in these glasses. Sixfolded zirconium is preferentially compensated rather than the tetrahedral boron and calcium only partially compensate the tetrahedral boron. Alteration gels arising from glass leaching were probed by oxygen-17 supplied by the alteration solution. Most of the zirconium is inserted in the silicate network forming Si-O-Zr bonds with the same configuration in the glass and in the gel. During leaching, calcium clearly remains in the alteration gel, either near non-bridging oxygen or as a zirconium charge compensator. This quantitative approach applied to 17O MQMAS spectra demonstrates its potential for investigating the structure of increasingly complex glass and gel compositions.  相似文献   

10.
《Journal of Non》1999,243(2-3):146-157
Alkali silicate glasses containing lanthanum oxide are useful model systems for understanding the structural role of rare earth cations in optical and other types of materials. We report 29Si and Raman spectra of sodium and potassium silicate glasses, both with added La2O3 and with La2O3 substituted for Na2O or K2O on an equal-oxygen basis. In the former series, silicate speciation changes show the formation of more non-bridging oxygens (NBO) as more of the network-modifying La2O3 is added. In the latter series, however, in which the nominal ratio of NBO to Si is constant, silicate speciation changes indicate that the actual ratio decreases significantly as La is substituted for 3 Na or K. The simplest explanation of this finding is that up to several percent of the oxygen in the La-rich glasses is not bonded to any Si, but instead forms `free oxide' ions that are part of La-rich domains. Although the size of these domains remains unconstrained, the lack of evidence for phase separation and continuity of trends in structure with composition suggests that the metastable liquid structure at the glass transition contains substantial intermediate-range heterogeneity.  相似文献   

11.
High resolution O 1s, K 2p and Si 2p XPS Spectra were collected for a series of potassium silicate glasses ranging in composition from 10 mol% to 35 mol% K2O. The mole fraction of bridging oxygen (BO) has been accurately evaluated from the O 1s spectra. BO mole fractions of K-silicate glasses were calculated from Q-species distributions previously reported by 29Si MAS NMR data. The mole fractions of BO are identical for the two techniques (within experimental error) in glasses containing 13 mol% to 25 mol% K2O but in the compositional range between 25 mol% and 35 mol% BO mole fractions obtained by XPS are slightly greater than values derived from NMR data. The slight discrepancies between the two techniques at higher K2O content have not been resolved. The experimental data between 13 mol% and 25 mol% K2O indicate the presence of a third type of oxygen, O2?, in these glasses. A thermodynamic analysis indicates O2? is present at a few mol% in the glasses of low K2O content, but increases monotonically with increased K2O content.The O 1s XPS line widths for the BO peaks are highly variable. The variation in line widths may result from two types of BO contributing to the BO peak. As in the Na2O–SiO2 glass system, one type probably bridges two Si atoms (SiOSi) and the second type is O bonded to two Si atoms and one K atom.The Si 2p XPS spectra are distinctly non-symmetric, with low binding energy shoulders commonly present on the major peak, suggesting two contributions to the Si 2p signal. There is a strong correlation of Si 2p XPS peak and shoulder intensities with the abundances of the Q4 and Q3 species in glasses of the same composition suggesting that, with additional resolution, XPS may be capable of resolving individual Q-species in this system.  相似文献   

12.
Iron redox equilibrium, structure and properties were investigated for the 10ZnO-30Fe2O3-60P2O5 (mol%) glasses melted at different temperatures. The structure and valence states of the iron ions in these glasses were investigated using Mössbauer spectroscopy, Raman spectroscopy and differential thermal analysis. Mössbauer spectroscopy indicated that the concentration of Fe2+ ions increased in the 10ZnO-30Fe2O3-60P2O5 (mol%) glass with increasing melting temperature. The Fe2+/(Fe2+ + Fe3+) ratio increased from 0.18 to 0.38 as the melting temperature increased from 1100 to 1300 °C. The measured isomer shifts showed that both Fe2+ and Fe3+ ions are in octahedral coordination. It was shown that the dc conductivity strongly depended on Fe2+/(Fe2+ + Fe3+) ratio in glasses. The dc conductivity increases with the increasing Fe2+ ion content in these glasses. The conductivity arises from the polaron hopping between Fe2+ and Fe3+ ions which suggests that the conduction is electronic in nature in zinc iron phosphate glasses.  相似文献   

13.
29Si and 31P MAS-NMR has been used in order to study the influence of P2O5 content on the structure of SiO2-Na2O-CaO-P2O5 bioglasses. The 29Si NMR spectra show many QSin entities co-existing in the same glass. For all the glasses, the QSin species are associated with Ca2+ and Na+. The glass network becomes more and more polymerized when the P2O5 content increases. The 31P NMR spectra show that the phosphorus is present as monophosphate with or without diphosphate complexes associated with both Ca2+ and Na+. The increase in phosphorus content modifies the relative abundance of phosphate complexes and leads to changes in the chemical environment around phosphate indicating that the distribution of cations is not homogeneous. Indeed most phosphate complexes attract calcium. The percentage of diphosphate complexes increases with the P2O5 content as the silicate network repolymerizes.  相似文献   

14.
H. Doweidar 《Journal of Non》2009,355(9):577-125
Relations for Na2O-CaO-SiO2 glasses have been developed to calculate the density of Na2O-CaO-P2O5-SiO2 bioactive glasses. The calculation makes use of NMR results of O’Donnell et al. indicating that P2O5 forms a separate phase, containing Na3PO4 and Ca3(PO4)2, in the investigated glasses. The volume of the silicate units is the same as that found in Na2O-CaO-SiO2, Na2O-SiO2, and CaO-SiO2 glasses. Similarly, the volume of PO4 units is equivalent to that in Na3PO4 and Ca3(PO4)2. Calculated densities are consistent with the experimental data.  相似文献   

15.
X-ray absorption spectroscopy (XAS) was used to characterize the tin (Sn) environments in four borosilicate glass nuclear waste formulations, two silicate float glasses, and three potassium aluminosilicate glasses. Sn K-edge XAS data of most glasses investigated indicate Sn4+O6 units with average Sn-O distances near 2.03 Å. XAS data for a float glass fabricated under reducing conditions show a mixture of Sn4+O6 and Sn2+O4 sites. XAS data for three glasses indicate Sn-Sn distances ranging from 3.43 to 3.53 Å, that suggest Sn4+O6 units linking with each other, while the 4.96 Å Sn-Sn distance for one waste glass suggests clustering of unlinked Sn4+O6 units.  相似文献   

16.
Raman spectra of alkali and alkaline earth borosilicate glasses are reported. These spectra are used to discuss the molecular structure of the glasses. The influence of Al2O3 additions on the structure of borosilicate glass is also discussed. It is shown that the same type of groups are present in borosilicate glasses as in borate and silicate glasses. The presence of large borate groups such as tetraborate and metaborate groups is strongly suggested by the Raman spectra. It appears that boron ions are hardly taken up in the silicon-oxygen network. Our results suggest that the region of phase separation is larger than the region presently acknowledged.  相似文献   

17.
High resolution Na 1s, O 1s and Si 2p core level XPS spectra of six Na2O-SiO2 glasses ranging in composition from 100 to 45 mol % SiO2 have been collected using the Kratos Ultra Axis instrument with its unique charge compensation system. The O 1s spectra for the glasses are well resolved so that bridging oxygen (BO, Si-O-Si) and non-bridging oxygen (NBO, Na-O-Si) signals can be accurately fitted and quantified without resorting to constraints or assumptions. The same samples were analysed by 29Si MAS NMR to obtain Q-species abundances from which BO and NBO proportions were calculated. Similar BO:NBO ratios were obtained by both methods over the entire compositional range studied. They are also consistent with most previous XPS and NMR results for glasses containing more than ~ 65 mol % SiO2. Our XPS and NMR experimental results, however, differ somewhat from previously published XPS and NMR results for glasses containing less than about 65 mol % SiO2.Na is mobile in the X-ray beam and mobility causes BO:NBO ratios to increase with time of exposure. Na mobility here has been circumvented to yield reliable BO:NBO ratios of the glasses. The ratios are lower than previously reported in XPS studies and are similar to ratios obtained from our 29Si MAS NMR results on the same glasses. The XPS and 29Si MAS NMR results also indicate the presence of a third oxygen species in sodic glasses. As has been proposed for CaSiO3 glass and for sodic and potassic glasses containing La, we suggest that O2− is present in sodic glasses at small concentrations. The O2− content correlates with increased soda content and may be associated with, and instrumental in development of, three dimensional percolation channels in the glasses. The XPS O 1s line width of the BO peak is broader than the NBO peak, indicating more than one contribution to the BO peak. As observed in crystalline Na metasilicate and Na disilicate, BO of Na-silicate glasses may be of two types, one arising from BO bridging two Si atoms, and the second BO signal arising from BO bonded not only to two Si atoms but also to Na.  相似文献   

18.
The environment of Nd3+ ions has been studied using optical absorption spectroscopy and EXAFS at the Nd L3-edge, in a series of soda lime aluminoborosilicate glasses with increasing B2O3 content. The proportion of BO4 units has been determined by 11B MAS NMR in an equivalent glass series with La3+ ions replacing the majority of Nd3+ ions, and complementary information has been obtained by measuring the Nd3+ decay fluorescence times in these latter glasses. In these glasses with low Al2O3 content, the R′ ratio, with R′ = [Na2Oexc] / [B2O3] and [Na2Oexc] = [Na2O] − [Al2O3] − [ZrO2], plays a key role in controlling the structural organization and crystallization resistance, in a similar way as the R ratio in the Dell and Bray model of sodium borosilicate glasses. At R′ > 0.5, the Nd3+ ions are located in a mixed silicate-borate environment and, by slow cooling of the melt, they tend to crystallize within a silicate apatite phase close to the Ca2Nd8(SiO4)6O2 composition. At R′ < 0.5, the structural results are compatible with Nd3+ ions located in a borate-type environment (not excluding Si neighbors), and, by slow cooling of the melt, they segregate with Ca2+ ions within a Si-depleted separated borosilicate phase.  相似文献   

19.
《Journal of Non》2007,353(44-46):4015-4028
A mathematical approach was developed to interpret Raman spectra of binary silicate glasses and melts without the necessity of external calibration, e.g., from NMR spectroscopy. The developed approach is based on Principal Component Analysis (PCA), linear combinations of partial Raman spectra and a linear optimization technique. In order to apply and to test this approach, we developed an experimental method to collect a large number of Raman spectra efficiently. We applied the quantification and the experimental approaches to investigate potassium silicate glasses with compositions from 17.4 to 38 mol% K2O. The equilibrium constant for the reaction 2Q3  Q2 + Q4 was found log K3 = −2.37 ± 0.07, in excellent agreement with NMR studies for the same glasses.  相似文献   

20.
Barium-sodium borosilicate glasses containing upto 6 wt% fluoride ions were prepared by conventional melt quench method and characterized by 19F, 29Si and 11B nuclear magnetic resonance (NMR) techniques.19F NMR studies have confirmed the presence of mainly linkages like F-Si(n) or F-B(n) along with F-Ba(n). Their relative concentrations are unaffected by F content in the glass. Incorporation of fluoride ions in the glass is associated with significant reduction in the nonbridging oxygen concentration attached to silicon, as revealed by the increase in the concentration of Q3 structural units of silicon at the expense of Q2 structural units. 11B NMR studies have established that the relative concentrations of BO3 structural units are higher for F ion containing glasses compared to the one without F ion incorporation. The observed increase in the relative concentrations of Q3 structural units of silicon and BO3 structural units with fluoride ion incorporation in the glass has been attributed to the formation of F-Ba(n) type of linkages, thereby reducing the concentration of network modifying cations for breaking the Si-O-Si/B-O-B linkages. Formation of such structural units weakens the glass network thereby decreasing the glass transition temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号