首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用溶液法制备了硫氰酸亚铜(CuSCN)薄膜,并将其作为空穴传输层制备了平面n-i-p型钙钛矿太阳电池.系统考察了CuSCN薄膜退火温度、旋涂转速对钙钛矿太阳电池性能的影响.研究结果表明,CuSCN薄膜在70 ℃下退火10 min可以获得较好的电池性能;在此基础上通过调整旋涂转速至2000 r/min,控制CuSCN薄膜厚度约为240 nm,电池性能获得了进一步的提升,电池效率可达11.77;.该研究结果表明,CuSCN材料是一种有潜力的、低成本高性能无机空穴传输材料.  相似文献   

2.
氧化镍作为高效钙钛矿太阳电池中常用无机空穴传输层材料,具有良好的光学透过性及化学稳定性,并且还可以通过磁控溅射等方法进行大面积制备,且成本低廉。然而相比于有机空穴传输材料,氧化镍和钙钛矿界面处的能级失配、缺陷及不良化学反应等限制了基于氧化镍空穴传输层的宽带隙钙钛矿太阳电池的性能。为解决这一问题,本文提出了采用(2-(9H-咔唑-9-基)乙基)膦酸((2-(9H-carbazol-9-yl) ethylphosphonic acid, 2PACz)自组装层作为氧化镍/宽带隙钙钛矿界面修饰材料。该分子可以有效钝化氧化镍表面缺陷、调节上层钙钛矿的成膜及促进界面电荷传输,最终宽带隙钙钛矿太阳电池的光电转换效率由16.18%提升至18.42%。本工作为氧化镍空穴传输层在宽带隙钙钛矿太阳电池中的应用提供了一种可借鉴的策略。  相似文献   

3.
为了开发新型的太阳能电池关键材料,合成了一种新的基于咔唑的小分子材料Cz-3Th,将其用作空穴传输材料(HTM)成功地应用到钙钛矿太阳能电池当中.这种新型的小分子材料两步反应即可合成,原料易得且成本较低.在使用低温溶液处理的SnO2纳米颗粒作为电子传输层的CH3NH3PbI3钙钛矿太阳能电池中,以Cz-3Th为空穴传输层,在100 mW/cm2 AM 1.5 G光照条件下获得0.75 V的开路电压(Voc),光电转化效率(PCE)为2.68;.因此,在未来趋势为环境友好和低成本效益的钙钛矿太阳能电池中Cz-3Th有很大发展潜力.  相似文献   

4.
溴基钙钛矿太阳电池因其工艺简单、高开压的特性,可在叠层太阳电池、彩色的显示设备和光伏建筑一体化等多方面进行应用而引起人们关注.此文首先研究了一步沉积法中不同溶质前驱体溶液对钙钛矿薄膜形貌和结晶的影响.在优化前驱体溶质条件下,通过加入适量醋酸铵获得均一致密、较大晶粒尺寸、具有择优取向的高质量钙钛矿薄膜,且提高了材料的疏水特性.以Spiro-OMeTAD作为空穴传输层制备器件获得最高1.42 V开路电压、5.87;的电池效率,并在30 d后仍保持89;的效率.  相似文献   

5.
采用AFORS-HET软件对以B-γ-CsSnI3作为光吸收层的平面异质结钙钛矿太阳能电池结构进行了模拟优化,其中TiO2作为电子传输层,Spiro-OMeTAD作为空穴传输层,讨论了钙钛矿太阳能电池光吸收层以及空穴传输层的各种参数对太阳能电池性能的影响.模拟优化得到B-γ-CsSnI3的PSCs最佳性能参数为:Voc=1.18 V,Jsc=24.48 mA/cm2,FF=80.04;,PCE=23.15;,效率虽略低于以CH3NH3PbI3作为光吸收层的钙钛矿太阳能电池,但考虑铅的毒性和钙钛矿电池的稳定性,以B-γ-CsSnI3作为光吸收层的PSCs将具有更好的应用前景.  相似文献   

6.
采用AFORS-HET软件对CsGeI3空穴传输层(Hole Transport Material, HTM)平面异质结钙钛矿太阳电池进行了模拟,TiO2作为电子传输层,CH3NH3PbI3作为光吸收层,C作为背电极,分别讨论了钙钛矿光吸收层厚度、缺陷浓度,光吸收层/HTM界面态密度和HTM对太阳电池性能参数的影响.模拟优化得到CsGeI3 HTM的PSCs最佳性能参数为:Voc=1.199 V,Jsc=22.2 mA·cm-2,FF=86.22;,PCE=22.95;,效率虽略低于spiro作为HTM的器件,但考虑生产工艺和制备成本,CsGeI3作为HTM的PSCs将具有更好的应用前景.  相似文献   

7.
多元硫化物Cd0.5Zn0.5S和氧化亚铜Cu2O载流子迁移率较大,且其制作工艺相对于传统的电子传输层和空穴传输层更为简单,因此这两种材料在钙钛矿太阳电池中具有很好的应用潜力。本文利用SCAPS-1D软件对以Cu2O和Cd0.5Zn0.5S为传输层、以铅基卤化物钙钛矿为吸收层的太阳电池进行模拟,主要研究了该器件的材料厚度、掺杂浓度、禁带宽度等因素对太阳电池性能的影响。结果表明:当光吸收层(CH3NH3PbI3)厚度开始增大时电池性能逐渐提高,但是增大到一定厚度时,电池性能下降,光吸收层的最佳厚度为400 nm;当光吸收层的缺陷态密度小于1.0×1014 cm-3时,缺陷态密度对电池性能的影响比较小;此外,铅基卤化物钙钛矿的禁带宽度对电池性能有重要影响,最佳禁带宽度为1.5 eV左右。通过模拟,得到了优化后的性能参数为:开路电压为1.010 V,短路电流密度为31.30 mA/cm2,填充因子为80.01%,电池转换效率为25.20%。因此,Cu2O/CH3 NH3PbI3/Cd0.5Zn0.5S钙钛矿太阳电池是一种很有发展潜力的光伏器件。  相似文献   

8.
几种常用的导电聚合物(如PTAA(聚三芳基胺))具有优良的光电特性,因此适合用作钙钛矿太阳电池中的空穴传输材料来提升器件性能.然而,这些材料的疏水特性导致难以形成致密且高质量的钙钛矿薄膜.此外,即使通过一些方法实现载流子传输层与钙钛矿膜之间的接触,但界面处也会存在严重的载流子复合.同时,这样制备出的粗糙钙钛矿薄膜会导致后续沉积在钙钛矿薄膜上的电子传输层的非均匀覆盖.因此,在疏水载流子传输层上实现良好钙钛矿薄膜沉积以获得优良器件性能仍然具有很大挑战性.在本研究中,利用PbI2进行锚固工程被证明是一种简便、绿色且有效的方法,可有效解决疏水载流子传输层浸润性问题.通过本方法,钙钛矿薄膜质量和器件性能得到了显著提高,并获得了效率高达19.53;的器件.同时,本方法也普遍适用于其他疏水的载流子传输层,进而制备优异的钙钛矿薄膜,这为高性能钙钛矿太阳电池的发展提供了一种可行策略.  相似文献   

9.
利用AMPS-1D软件对钙钛矿太阳能电池性能进行仿真.研究发现,当P3HT厚度500 nm时,钙钛矿太阳能电池的短路电流密度Jsc=18.995 mA/cm2,光电转换效率Ef=17.425;,填充因数FF=0.824,开路电压Voc=1.113 V.钙钛矿太阳能电池的光吸收层厚度为400 nm时,钙钛矿太阳能的光电转化效率最大.钙钛矿太阳能电池开路电压、短路电流密度、填充因数和光电转化效率等性能随着阴极材料功函数的增大而减.通过理论计算对制备高性能的太阳能电池具有指导性作用.  相似文献   

10.
电子传输层是钙钛矿太阳电池的重要组成部分.采用原子层沉积的方法制备二氧化钛薄膜,并将其作为电子传输层制备了平面钙钛矿太阳电池.系统研究了二氧化钛薄膜厚度和退火温度对钙钛矿太阳电池性能的影响.研究结果表明,TiO2的沉积速率约为0.41 ?/cycle,13 nm左右的二氧化钛薄膜能够获得较好的电池性能;后期退火改善了TiO2薄膜的光学和电学性能,但是退火产生的微小裂纹限制了电池的性能,因此,选择90 ℃退火条件下制 备的二氧化钛.最终利用原子层沉积制备的TiO2得到了17.1;的电池效率.  相似文献   

11.
为了改善金刚石与金属基体的润湿性,利用化学镀的方法在金刚石粉体表面成功的进行了镀铜,通过X射线衍射(XRD)、扫描电镜(SEM)等测试手段研究了pH值及添加剂对镀层的组织、形貌及镀速的影响.结果表明:当镀液的pH值低于10.5时,镀速几乎为零,没有反应发生;pH值在10.5~12.5时,镀速随pH值的增大而增大,XRD图谱中开始有铜的衍射峰出现,且衍射峰随pH值的增大而增强;pH值大于12.5时,镀速开始随pH值增大而下降,衍射峰开始随pH值增大而减弱.当pH值为11时,金刚石基体有裸漏现象,镀层较薄;pH值为12时,镀层表面较为致密、结合较好、有一定厚度且包覆严实;pH值为13时,镀层开始变得粗糙,有卷边、起皮及脱落现象.当向镀液中分别添加适量的亚铁氰化钾及二联吡啶时,能够提高镀液的稳定性,两种添加剂对铜的化学沉积都有阻化作用,降低铜的沉积速率,使镀层光亮致密.  相似文献   

12.
Si基外延GaN中缺陷的腐蚀研究   总被引:2,自引:0,他引:2  
本文采用KOH:H2O=3:20~1:25(质量比)的KOH溶液,对Si基外延GaN进行湿法腐蚀.腐蚀后用扫描电子显微镜(SEM)观察,GaN面出现了六角腐蚀坑,它是外延层中的位错露头,密度约108/cm2.腐蚀坑的密度随腐蚀时间延长而增加,说明GaN外延生长过程中位错密度是逐渐降低的,部分位错因相互作用而终止于GaN体内.观察缺陷腐蚀形貌还发现,接近裂纹处腐蚀坑的密度要高于远离裂纹处腐蚀坑的密度,围绕裂纹有许多由裂纹引起的位错.腐蚀坑的密度可以很好地反映GaN晶体的质量.晶体质量较差的GaN片,腐蚀后其六角腐蚀坑的密度高.  相似文献   

13.
在综述Pb(Zr,Ti)O3(PZT)基反铁电材料的研制与性能研究进展的基础上,重点探讨了PZT95/5反铁电材料和在PZT基础上掺杂改性的Pb(Zr,Sn,Ti)O3(PZST),(Pb,La)(Zr,Sn,Ti)O3 (PLZST)反铁电材料.总结了利用La3+、Nb4+、Hf4+、Sr2+、Ba2+和Nd3+等离子对富锆PZT以及PZST粉体、陶瓷以及薄膜材料的掺杂取代改性研究.讨论了各类PZT基反铁电材料的铁电(FE)-反铁电(AFE)相变机理以及其场致应变性能.展望了PZT基反铁电材料今后研究与应用的发展方向.  相似文献   

14.
利用光的上转换使微球辐射出与入射光频率不同的光,可以利用光学滤波的方法排除入射光的影响, 则可以降低微球形貌共振现象实际应用的难度.为实现基于微球谐振腔的光上转换,本文设计制作了Tm3 /Yb3 共掺杂的TiBa玻璃微球.其成份为:25TiO2-27BaCO3-8Ba(NO3)2-5ZnO2-8CaCO3-5H3BO3-9SiO2-7 water glass -1Tm2O3.5Yb2O3(质量分数).实验观测了TiBa玻璃与TiBa玻璃微球在633nm激发下的发射光谱,并进行了讨论.观察到了从上转换光的很强的型貌共振现象.实验结果与理论分析相符,用Lorenz-Mie理论可以很好地解释实验结果.  相似文献   

15.
利用传输矩阵法研究了一维异质双周期光子晶体的光子带隙随超声波变化的特性.首先,光子晶体的介电常数随超声波的传播出现周期性变化;然后,光波入射到此光子晶体时产生声光效应,采用Matlab软件模拟仿真并分析了该结构光子晶体的光子禁带的位置、宽度与超声波强度及频率的关系.结果表明:光子晶体禁带的位置、宽度可以通过控制超声波的强度和频率实现实时调制.这个结果为基于声光效应的可调谐光子晶体器件的研究提供了理论依据.  相似文献   

16.
本文报导以固态聚苯乙烯为碳源,经机械抛光和电化学抛光双重处理的铜箔为衬底,用CVID法进行石墨烯可控生长的研究结果.用光学显微镜、原子力显微镜、拉曼光谱、光透射谱、扫描隧道显微镜和场发射扫描电镜对生长的石墨烯进行了表征.研究发现经过抛光处理的铜箔由于其平整的表面和很低的表面粗糙度,在其上生长的石墨烯缺陷少,结晶质量高.而未经抛光处理的铜箔在石墨烯生长过程中,铜箔不平整的表面台阶会破坏其上生长的石墨烯的微观结构,在生长的石墨烯二维结构中产生高密度晶界和缺陷.还在双重抛光处理的铜箔上实现了石墨烯的层数可控生长,结果表明固态碳源聚苯乙烯的量为15 mg时可生长出单层石墨烯,通过控制固态源重量得到了1~5层大面积石墨烯.  相似文献   

17.
采用基于密度泛函的色散修正方法研究了Li、Na、K、Rb吸附在单空位缺陷(SV)双层石墨烯(BLG)表面的体系,对吸附体系的晶体结构、吸附能、电荷转移、扩散行为和电子结构进行了计算和分析.结果表明,碱金属原子更容易吸附在缺陷区域空位上方;使BLG平均层间距减少了0.0100~0.0137 nm;吸附体系的Bader电荷、电荷密度差分和电子结构的计算结果表明,碱金属原子与BLG之间结合属于离子键.通过计算扩散能垒发现,脱离缺陷所需激活能比朝向缺陷扩散的能垒大0.300~0.640 eV,表明SV缺陷能够捕获Li、Na、K、Rb原子.  相似文献   

18.
使用分子动力学方法研究硅粒子注入技术.系统比较分析了团簇粒子的包含反射,扩散和植入基底在内的全部运动过程,同时使用可视化方法观测记录基底表面形貌演化过程.所建立模型直观地显示了低注入能量域内的新特征.注入过程中,团簇粒子由不同粒径(数量)的硅原子组成.通过对粒径变化在注入过程的影响研究揭示了注入技术机理.仿真结果表明提出方法可用于定量预测注入粒子表面分布.本文工作可作为原子尺度下生成基底表面特征或设计图案的参考,并对可控表面沉积技术提供理论指导.  相似文献   

19.
铜负载湿式氧化催化剂焙烧条件的研究   总被引:1,自引:1,他引:0  
Cu-O/FSC是一种优化制备的负载型催化剂,实验中以其催化湿式氧化处理模拟印染废水,考察焙烧条件对催化剂的影响.以水样COD去除率和脱色率评价催化剂的活性、以处理出水Cu溶出浓度评价催化剂的稳定性,通过AA、XRD、SEM等研究了焙烧温度和时间对催化剂性能、物相及形貌等的影响.结果表明:随着焙烧温度的提高和焙烧时间的延长,催化剂活性降低、稳定性提高;催化剂的比表面和孔容随着焙烧温度的提高而减少;适宜的催化剂焙烧温度和时间分别为650 ℃和5 h.  相似文献   

20.
基于电沉积技术的纳米晶材料晶粒细化工艺研究   总被引:8,自引:1,他引:7  
纳米晶材料电沉积工艺是在传统电沉积工艺的基础上,通过控制适当的工艺条件,最终获得具有各种性能的纳米晶电沉积层的过程.研究表明,由电沉积工艺制备的纳米晶材料,晶粒细小且组织均匀,具有耐磨、耐蚀、耐高温氧化等特殊性能.本文分析了在电沉积过程中纳米晶形成的机理,探讨了工艺参数、复合电沉积和脉冲电沉积、有机添加剂以及采用其它工艺措施对晶粒细化过程的影响.介绍了电沉积纳米晶材料的各种性能及应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号