首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combined effects of supersaturation and Ba2+ on potassium dihydrogen phosphate (KDP) were investigated in batch cooling suspension crystallization. Growth size, morphology, and impurity Ba2+ adsorbed in the KDP crystals were measured with changing Ba2+ concentration and supersaturation. Significant changes in shapes and volume of the grown crystals have been observed. The results further confirmed that the size and shape of crystals were greatly determined by supersaturation. Ba2+ ions significantly modified the growth habit of KDP crystals. The concentration of Ba2+ ions adsorbed in the crystals increases with the increasing Ba2+ ions in the solutions and supersaturation. The foggy phenomena caused by the addition of Ba to the KDP solution were also described. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Large size crystals of KH2PO4 (KDP) were grown by adopting rapid growth technique from point seeds in a 1500‐liter crystallizer which is used to grow KDP crystals by conventional method. The grown KDP crystal size can reach to 310 × 310 × 320 mm3 and the average growth rate was 8mm/day. The optic properties of the rapidly grown KDP crystals were characterized comparing with the KDP crystals grown by the traditional temperature reduction method. We found it that the optical quality of the KDP crystals we grown rapidly are not significantly different from those of KDP crystals grown by traditional method. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
KDP crystals were rapidly grown from solutions doped with different Nd3+ concentrations. During the growth process, “foggy” inclusions were selectively captured in the pyramidal sector of KDP crystal and hourglass shaped crystals were obtained. It is found that the nonuniform distribution of Nd3+ ions causes remarkable differences in optical quality between prismatic and pyramidal sectors. With increasing Nd3+ concentration, the optical quality is greatly decreased for pyramidal sectors, while the change is not so obvious for prismatic sectors. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Single crystals of pure and Lanthanum added KDP crystals were grown from aqueous solution. The influence of La3+ ions in KDP crystals is studied. Isolated centers are formed by La3+ ions in KDP structure along (100) plane. La3+ ions incorporated into superficial crystal growth layer and slightly affect the growth process as they generate weak lattice stresses. The creation of these weak lattice stress is confirmed by Vickers's micro hardness test. The HRXRD analysis showed reduced structural defects in the La added KDP in the (100) plane than pure KDP. The incorporation of La in the crystal was confirmed by EDAX analysis. The Kurtz's powder SHG efficiency was found to be 1.5 times that of pure KDP. The UV‐Vis transmission spectra of La added KDP showed excellent transmittance from 1100 nm to 340 nm and did not show any change in lower cutoff wavelength with respect to pure KDP. Laser damage threshold value has been determined using Q‐switched Nd:YAG laser operating at 1064 nm and with 65 ns pulses in single shot mode. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Single crystals of barium oxalate monohydrate (BaC2O4.H2O, BOM) were grown in pure form by controlled diffusion of Ba2+ using the gel technique at different temperatures. Starting from aqueous Ba2+ chloride (BaCl2) and acetic acid (C2H2O4) in gel, this method offers a low‐cost and an easiest alternative to other preparation methods for the production of barium oxalate bulky single crystals. The optimal conditions for the growth of BOM crystals in silica gel were found by investigating different growth parameters such as gel pH, gel aging and crystallization temperature. Irrespective of all such crystallization environments, growth rate of the crystals were initially less and then exhibited supersaturation effect leading to non‐linearity. Gel aging and temperature has profound effect on nucleation density that resulted less number of crystals of maximum size in the gel matrix. Perfect single crystals were grown on gels of higher pH. The macropore morphology and porosity was controlled by changing age of the gel. It has been found that temperature has a fabulous effect in controlling the nucleation density by altering the supersaturation conditions for the formation of critical nuclei. The entire growth kinetics informed that the grown crystals were derived by the one dimensional diffusion controlled process. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Single crystals of organic nonlinear optical material of pure, Cu2+ and Mg2+ doped L‐arginine acetate (LAA) were successfully grown by slow evaporation method at room temperature. The UV‐Vis‐NIR spectra of pure and doped LAA indicate that these crystals possess a wide optical transmission window from 240‐1600 nm. Non‐linear optical studies reveal that the SHG efficiency of LAA is nearly three times that of KDP. The dielectric response of the samples was studied in the frequency region 100 Hz to 2 MHz and the influence of Cu2+ and Mg2+ substitution on the dielectric behaviour had been investigated. Photoconductivity study proves that both pure and Cu2+ and Mg2+ doped LAA crystal exhibit positive photoconductivity. It is evident from the Vickers hardness study that the hardness of the crystal decreases with increasing load both for pure and doped samples. ESR studies confirmed the incorporation of Cu2+ into LAA and the value of g‐factor was found to be 2.1654. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
L‐arginine hydrochloride monohydrate (LAHCl.H2O) has been synthesized and single crystals have been grown from its aqueous solution by slow evaporation and slow cooling methods. The solubility of the material was measured at various temperatures and bulk crystals of size 26×13×11 mm3 have been grown by optimizing the growth parameters. The grown crystals have been subjected to single crystal XRD studies to confirm the structure and to estimate the lattice parameters. FTIR analysis indicate the mode of vibrations of different molecular groups present in LAHCl and confirm the protonation of guanidyl, amino groups and deprotonation of COO groups. UV‐Vis transmission spectrum revealed the linear optical properties of the grown crystals with a transparency of 65% over the entire visible range upto 300 nm. Thermal behavior of the grown crystal was investigated from DTA and TGA measurements. Dielectric studies have been carried out on the grown crystals. Kurtz and Perry powder SHG technique confirms the NLO property of the grown crystal. The SHG efficiency of LAHCl was found to be 0.38 with respect to KDP. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Single crystals of KDP crystals with embedded Urea molecules and TiO2 nanoparticles have been grown from aqueous solution by the temperature lowering method. The effect of the organic molecules and nanoparticles on the structural and mechanical properties has been studied. It has been observed that addition of Urea molecules improves laser induced damage threshold and mechanical strength of the crystal, while TiO2 nanoparticles have the opposite effect. The structure and composition of KDP:Urea crystal are studied by three‐crystal X‐ray diffraction analysis, which reveals the existence of a correlation between the increase of the microhardness value and the change of the crystal lattice parameter. The surface features of KDP:TiO2 crystals are analyzed by scanning electron microscopy that reveals the presence of quasi‐equidistant growth bands caused by capture of the nanoparticles. It is shown that the rise of TiO2 nanoparticles concentration up to 10−4 wt.% and higher resulted in 3‐fold reduction of the laser damage threshold of KDP:TiO2 relative to pure KDP in [001] and [100] crystallographic directions. It is found that microhardness and fracture toughness decrease at the nanoparticles concentration of 10−3 wt.% due to crack formation at crystal lattice discontinuities. The grown crystals also have been subjected to dielectric studies.  相似文献   

9.
The habit of the organic non‐linear optical material meta‐nitroaniline (mNA) crystallized from different organic solvents such as acetone, benzene, ethyl acetate, n‐hexane, methanol and toluene were studied. Solubility of mNA in these solvents at various temperatures in the range between 288 and 323 K was determined by gravimetric method. Crystals were grown by restricted evaporation of solvents method. Solutions with different solvents having different chemical nature and polarity yielded crystals with different habits: one‐dimensional needles, two‐dimensional rhombic platelets and three‐dimensional octahedral. In addition, the mNA crystals show unidirectional growth behaviour along its polar [001] direction irrespective of the solvents used. All the grown crystals were found to be orthorhombic system with point group mm2 and space group Pbc21 which was confirmed by powder X‐ray diffraction study. Optical transmittance study showed that the grown mNA single crystals have optical transparency in the wavelength range between 430 and 1550 nm. SHG efficiency of the grown mNA crystal was 3 times grater than KDP. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
在不同的溶液pH值条件下进行了点状籽晶法慢速和快速生长KDP晶体实验,发展了观察晶体中散射颗粒分布的激光层析技术,通过图像处理得到了KDP晶体内部(100)面完整的散射颗粒分部图,对不同生长速度、不同pH值条件下点状籽晶法生长的KDP晶体的散射颗粒分部做了对比.利用表面光学投影技术观察了晶体表面宏观形貌,并由此分析了不同生长条件下生长机制对散射颗粒分布的影响.测定了散射颗粒密度不同部位的晶体透过率.  相似文献   

11.
The as‐grown surface and inner structures of undoped and Nd3+‐, Cr3+‐, V3+‐, Ce3+‐, Er3+ and Yb3+ – and (Er3+ + Yb3+) – doped yttrium aluminum borate (YAB) single crystals grown from (K2Mo3O10 + B2O3) flux by spontaneous crystallization or top seeded solution growth (TSSG) technique, were investigated using optical and scanning electron microscopic and analytic chemical methods. Fine and rough growth hillocks of dislocational origin, growth layers, traces of inner planar defects and foreign phase crystalline debris were found and analyzed on the as‐grown faces of crystals. Irregular grains and regular block structures and foreign phase inclusions were observed and studied in the interior of the crystals. The chemical compositions measured by energy dispersive X‐ray spectrometry on perfect and imperfect micro regions are compared with those obtained by flame atomic absorption spectrometry on bulk crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The coniform bottom device was designed and used in the rapid growth process of KDP crystal. A seed support rack was also designed to be used in rapid growth of KDP crystal to avoid spontaneous nucleation on the interface of seed crystal and rack. The KDP crystals were fast grown at the growth rate of up to 25 mm/day. The optical scatter centers in KDP crystals were observed and their transmissions of different parts were measured. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The growth of a new nonlinear optical material L‐valine by solvent evaporation method is reported here. To grow good quality crystals pH value of growth solution has been optimized and solubility of L‐valine in different solvents and different pH values was determined. The grown crystals were characterized by IR, single crystal XRD, DTA and TGA, optical transmission and second harmonic generation (SHG) efficiency measurement. SHG efficiency of L‐valine was found equivalent to KDP and its transmission is 75%‐80% from ultraviolet to near IR region. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Phosphite, which often exists in growth solutions obtained directly from commercial P2O5 , was found to have significant inhibiting effects on the growth of pyramidal face of KDP crystals. K(DxH1‐x)2PO4 (referred to as DKDP) crystals with different deuterium fraction x were grown and the optical performances were investigated. The absorption coefficients at 1.05 μm decreases monotonically with the increase of x. The transmission threshold shift from 1.65μm at x=0 to 2.10 μm at x=0.96. The high temperature phase transition temperature and latent heat were measured using the method of differential scanning calorimetry (DSC). Thermal conditioning experiments were carried out at 180°C and 140°C for KDP and DKDP, respectively. After conditioning, a different degree of improvement was observed in the optical homogeneity of the samples, while the laser damage threshold and light absorption coefficient showed no significant change.  相似文献   

15.
Mixed crystals of K1‐x(NH4)xH2PO4(KADP) were grown from KDP (KH2PO4) dominated mixed solutions with varying molar proportion of ADP (NH4H2PO4) addition. It was found that, as the increase of ADP molar concentration, the growth rate along z‐axis of KADP crystal decreased rapidly. The structure of KADP crystals was investigated by powder XRD and the lattice parameter was calculated. The results showed that the lattice parameter c of KADP crystal increased with the molar concentration of ADP. The optical homogeneity of grown KADP crystals was determined with a differential phase‐shifting interferometry. Frequency dependences of the dielectric constant and dielectric loss of KADP crystals were measured at room temperature (290 K). The dielectric constants of KADP crystals were almost invariant with the increase of frequency. In the region of 102∼104Hz, the values of the dielectric loss reduced with the increase of frequency. The piezo‐resonance coupling effect still exists in KADP crystals at room temperature, but shifted to low frequency band. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Regeneration process of a 330×330×20 mm3 Z-plate seed is carried out in a 1.5 metric tonnage volume crystallizer that placed in a water bath of temperature fluctuation less than ±0.02 °C within 10 days. The surface of the whole crystal was restored by the formation of a box-like structure filled with growth solution, and then the transparent layer of perfect tetragonal KDP crystal without inclusions, crack and milky regions just like those produced by traditional slow cooling technique can be grown from solution. After the regeneration, the height of KDP crystal is merely 0.5 times the side of plate seed. We found it that the optical transmission and laser damage threshold of the KDP crystals we grown are not significantly different from those of KDP crystals grown by traditional method.  相似文献   

17.
Non linear optical (NLO) materials have acquired new significance with the advent of a large number of devices utilizing solid‐state laser sources. Several NLO materials have been used for this kind of technological applications. The Potassium di‐hydrogen phosphate (KDP) one of NLO material having superior non linear optical properties has been exploited for variety of applications. In the present investigation we have grown KDP crystals from aqous solution with thiourea, an organic non linear optical material. We could enhance the SHG efficiency of thiourea doped KDP crystal. It was 1.99 times more that of pure KDP. We observed more enhancements in nonlinearity for low concentration of thiourea.The crystal structure and cell parameters of grown crystal were determined from Powder XRD.The incorporation of thiourea in the grown crystals was qualitatively analyzed from FT‐IR study. The absorption spectra of pure and thiourea doped KDP crystal reveal that thiourea doped KDP crystals would be a better nonlinear optical (NLO) material for second harmonic generation (SHG) than pure KDP. The thermal decomposition and weight loss of pure and thiourea doped KDP crystal was observed by thermogravimetric (TGA) analysis and Differential Scanning Calorimetry (DSC). The high frequency dielectric study of pure KDP crystal, thiourea doped KDP crystals and organic additive thiourea was carried out using X‐band at frequency 8GHZ and 12GHZ by transmission line wave guide method. We observed low dielectric constant of thiourea doped KDP crystal when it is doped with 2mole% of thiourea. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
By altering the concentration of silicate (SiO32‐) impurity in the solution, a series of potassium dihydrogen phosphate (KDP) crystals was obtained by the conventional temperature cooling and the rapid growth methods, respectively. It was observed that the presence of SiO32‐ made KDP crystals tapering in conventional cooling method, while more SiO32‐ induced inclusions at prismatic sectors in the rapid growth method. Laser‐polarization‐interference results showed that SiO32‐ extended the dead zone and reduced the growth rate of (100) face of KDP crystals. The negative influence of SiO32‐on the growth was considered absolutely similar to the effect of cations. It was also suggested that the stability of solution doped with SiO32‐ was improved without seed crystals, while it was destructed with seed crystals. The inhibition mechanism was analyzed in terms of SiO32‐ absorption on (100) face. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A single KDP (potassium dihydrogen phosphate) crystal was grown in a supersaturated solution containing a metallic ion (Al3+, Fe3+, or Cr3+). The growth rate, morphology, and distribution of the metallic ions into the KDP crystal were measured as the ionic concentration and supersaturation in the solution changed. It was found that in the KDP crystal, Al3+ and Fe3+ were greatly concentrated, but Cr3+ was diluted. Complete expressions for the effect of metallic ions on all aspects of the growth of KDP crystal were suggested. The growth rates of (100) and (101) faces were well correlated by the empirical equation and resulted in good estimation of morphology. The distribution of metallic ions into KDP crystal was also correlated by the distribution model. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Single crystals of L‐Prolinium tartrate (C5H10NO2)+ (C4H5O6), a new organic non‐linear optical material of size: 15 × 10 × 10 mm3 were grown using submerged seed solution growth method. Characterization of the crystals was made using single crystal X‐ray diffraction and density determination. Spectroscopic, thermal, optical and mechanical studies were carried out. These studies show that the crystals are thermally stable upto 161°C, transparent for the fundamental and second harmonic generation of Nd: YAG (λ = 1064 nm) laser and possess good mechanical strength. Second harmonic generation (SHG) conversion efficiency was investigated to explore the NLO characteristics of this material using Kurtz and Perry method and it was found that the SHG conversion efficiency is about 90% of that of the standard KDP crystals. Laser damage threshold study was also carried out. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号