首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了研制分解汽车尾气路面TiO2涂层,以钛酸丁酯为Ti源、硝酸铁为Fe源,尿素为N源,采用水热法合成了Fe-N共掺杂TiO2((Fe,N)-TiO2)纳米粉体.采用X射线衍射仪、透射电子显微镜、X射线光电子能谱、紫外-可见光谱仪等对样品进行了表征.结果表明合成的(Fe,N)-TiO2样品均为锐钛矿晶型,样品的平均粒径大小约为7.2nm.Fe、N共掺杂对TiO2的晶体结构没有明显影响,Fe和N离子都已经进入TiO2晶格.相对于纯TiO2而言,随着Fe和N离子的掺入,(Fe,N)-TiO2样品在可见光范围内吸光强度明显增强,光吸收带边发生红移.以可见光光催化降解亚甲基蓝(MB)研究了样品的光催化性能,(Fe,N)-TiO2对MB的降解能力较纯TiO2和N-TiO2有明显提高,说明Fe和N离子共掺杂会产生协同效应,使(Fe,N)-TiO2样品在可见光区域的光催化活性得到显著提高.  相似文献   

2.
以工业偏钛酸为前驱体、尿素为氮源,混合煅烧制备了不同氮含量的TiO2光催化剂(记为TiO2-xN-温度).用傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)、X射线衍射(XRD)、透射电子显微镜(TEM)、荧光光谱和紫外-可见光漫反射吸收光谱(UV-Vis/DRS)等对催化剂进行了表征.以亚甲基蓝为目标污染物,评价了样品的可见光光催化活性.结果表明,当催化剂中尿素与TiO2质量比为3∶1,煅烧温度为400℃(即TiO2-3N-400℃)时制得的样品活性最高.500 W的长弧氙灯照射4h,对亚甲基蓝降解率达到93.9;.  相似文献   

3.
采用溶胶凝胶法制备了不同量B掺杂TiO2纳米粉体,采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、傅里叶变换红外吸收光谱(FT-IR)及紫外-可见漫反射光谱(UV-Vis)等技术对催化剂进行了表征.结果表明:B部分掺入到TiO2晶格间隙中形成B-O-Ti键,部分以B2O3的形式存在,随着B掺杂量的增加,进入晶格的B比例减少;B掺杂有效抑制了TiO2由锐钛矿相向金红石相的转变,掺杂样品经650℃煅烧后仍为锐钛矿结构,随B掺杂量的增加,其晶粒变小;B掺杂使得TiO2表面羟基量显著增加,且掺杂量越大表面羟基量越多;各掺杂样品的吸收边带没有明显红移,光吸收强度较未掺杂TiO2稍弱,且随着B掺杂量的增加,光吸收能力呈递减趋势.可见光催化降解亚甲基蓝结果表明,B掺杂大大提高了TiO2的光催化活性,这与掺B后晶粒变小,表面羟基量显著增加有关;当B掺杂质量百分数为1.0;时,B/TiO2可见光催化活性最高,达93.40;.  相似文献   

4.
以钛酸四丁酯为Ti源,采用溶胶-凝胶自蔓燃法制备了镧掺杂的La-TiO2(简写为LT)纳米粉体.利用X射线粉末衍射(XRD)、红外光谱(FIIR)、透射电子显微镜(TEM)等对掺杂型TiO2粉体的晶型结构与颗粒尺寸等进行表征.利用紫外-可见光吸收光谱(UV-vis)研究了H2O2改性、镧掺杂量以及混晶结构对TiO2纳米粉体降解甲基橙的影响.结果表明:镧掺杂混晶TiO2粉体的光催化活性明显优于未掺杂的锐钛矿TiO2粉体.当La3+掺杂量为0.5;,合成温度为475℃(金红石相含量为26.0;)时,得到的TiO2粉体光催化活性最好.H2O2的加入有助于TiO2光催化剂表面的电子-空穴对生成,提高光催化剂对甲基橙的降解率,当H2O2浓度为6;时,光照3h后,降解率达到了91.97;.  相似文献   

5.
采用溶胶-凝胶法制备了系列生物质改性复合纳米TiO2.以亚甲基蓝溶液为模拟污染物,考察了其可见光催化活性,并确定了最佳制备工艺.通过X射线光电子能谱(XPS)、X射线衍射(XRD)、场发射扫描电镜(FESEM)、紫外-可见漫反射光谱(UV-Vis-DRS)、荧光光谱(PL)等手段对催化剂样品进行了表征.实验结果表明,催化剂对亚甲基蓝的光催化降解适应一级反应动力学,复合TiO2和纯TiO2的反应速率常数分别为0.4990 h-1和0.0305 h-1,且复合催化剂实现了C、N、S、P、K等多元素的共掺杂.相比纯TiO2,复合TiO2的比表面积增大,结晶度升高,光生载流子复合率降低,吸收边带红移,禁带宽度窄化了0.09 eV.  相似文献   

6.
以钛酸异丙酯为钛源,利用三嵌段共聚物EO106 PO70 EO106(F127)修饰的溶胶-凝胶法合成了La、Fe共掺杂的单分散TiO2介孔微球.并通过X射线衍射(XRD)、场发射扫描电镜(FESEM)、能谱分析(EDX)、透射电镜(TEM)、BET、X射线光电子能谱(XPS)、紫外-可见光漫反射技术对样品的物相组成及微观结构进行了表征,利用紫外光照射降解亚甲基蓝溶液的方法测定其光催化性能.结果表明:与纯TiO2介孔微球相比,La3+的掺入抑制了TiO2晶粒的长大,La3+和Fe3+共掺入TiO2介孔微球的紫外-可见光的吸收带边发生红移,禁带宽度减小;在紫外光照射下,1at;La3+掺杂以及Fe3+、La3+共掺TiO2介孔微球的光催化活性均高于纯TiO2,其中1at;Fe/1at;La-TiO2的光催化性能最好.  相似文献   

7.
采用溶胶凝胶法制备了B、Ru共掺杂TiO2纳米粉体,采用XRD、TEM、XPS、FT-IR及UV-Vis等技术对催化剂进行了表征.结果表明:B部分掺入到TiO2晶格间隙中形成B-O-Ti键,部分以B2O3的形式存在;Ru掺入到TiO2品格;B、Ru掺杂均能抑制TiO2由锐钛矿相向金红石相的转变,同时促使TiO2晶粒细化;B掺杂能减少光生电子-空穴的复合、促进TiO2表面活性基团Ti-OH的生成、减小光学带隙值,而Ru掺杂的这三方面的作用却有限.Ru掺杂降低了TiO2的光催化活性,而B掺杂却能大幅提高了TiO2的光催化活性,因而Ru、B共掺杂样品的光催化活性比仅B掺杂样品还稍低,当B掺杂质量百分数为1.0;时,可见光下光催化降解亚甲基蓝的2h降解率由未掺杂TiO2的68.5;提高至84.3;.  相似文献   

8.
以纳米CdS和TiO2为原料,采用简便的机械化学法合成了CdS/TiO2复合光催化剂.用X射线衍射(XRD)、X射线光电子能谱(XPS)、激光拉曼光谱、透射电镜(TEM)、紫外-可见漫反射光谱(DRS)等手段对样品进行表征和分析.以亚甲基蓝为目标降解物,评价了其光催化活性.结果表明,机械化学有效促进了CdS在TiO2纳米颗粒表面的分散和相互作用,形成了CdS/TiO2复合纳米结构的光催化剂,25wt;-CdS/TiO2的可见光催化活性较纯CdS提高了5倍,在可见光照射下,其光电流响应提高了5倍.CdS/TiO2光催化活性的提高归结于CdS的表面杂化作用,提高了光生电子-空穴的有效分离与迁移.  相似文献   

9.
采用溶胶-凝胶法制备了纯TiO2和稀土Sm掺杂TiO2纳米粉体( Sm-TiO2),通过XRD、XPS、FT-IR、UV-Vis-DRS、PL和Nano-sizer纳米粒度仪等对样品进行表征,以亚甲基蓝( MB)的光催化降解为探针反应,探讨稀土Sm掺杂对纳米TiO2的结构和可见光催化性能的影响。结果表明,Sm掺入TiO2后在表面存在Sm3+和Sm2+两种价态, Sm掺杂抑制了TiO2从锐钛矿向金红石的相转变,阻碍纳米晶粒生长,增加了纳米粉体表面羟基含量;适量的Sm掺杂能使TiO2吸收光谱的阈值波长红移,有效降低光生e-/h+的复合率,提高TiO2光催化活性。热处理温度500℃时,掺杂1.0wt;Sm的纳米TiO2样品在普通日光灯下对MB在6 h内的光催化降解效率达97;,明显高于同等条件下Degussa公司产品P25的降解率56;。  相似文献   

10.
采用浸渍法制备Sm2O3掺杂TiO2的负载型光催化剂Sm2O3/TiO2,考察其在紫外可见光区对亚甲基蓝的光降解行为.利用XRD、N2吸附、SEM、TEM、XPS和ICP-OES等手段表征Sm2O3/TiO2样品,考察Sm2 O3掺杂量和亚甲基蓝浓度对亚甲基蓝紫外光降解活性的影响和催化剂Sm2O3/TiO2的催化稳定性.结果表明,Sm2O3/TiO2对亚甲基蓝的紫外光降解活性高于TiO2,这归因子掺杂Sm2O3引起TiO2的晶体缺陷.这种晶体缺陷作为光生电子和空穴的陷阱实现光生电子-空穴对的有效分离,从而提高Sm2O3/TiO2的光催化活性.Sm2O3/TiO2对亚甲基蓝的光降解活性随着Sm2O3掺杂量的增加先增大后减小,随着亚甲基蓝浓度的增大而减小.Sm2 O3掺杂量5.0wt;的Sm2O3/TiO2对亚甲基蓝紫外光降解的7次循环实验未出现明显失活.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号